Simplex Method for Linear Optimization

Shixuan Zhang

ISEN 320-501, Fall 2023

1 Standard Form of Linear Optimization (LO)

In graphical solutions for LO problems with two variables, we can find optimal solutions on vertices (the corner points). This observation can be more formally exploited by the simplex method. Before we present the algorithm, it is beneficial to consider standard forms of LO models, which have the following form.

$$
\begin{array}{ll}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m \tag{1}\\
& x_{1}, \cdots, x_{n} \geq 0
\end{array}
$$

Namely, we only have linear equality constraints and variable nonnegativity conditions in the standard form. Any LO formulation can be converted into the standard form by introducing auxiliary variables when necessary. For a less-than-or-equal-to constraint, we can use a slack variable $s \geq 0$ to rewrite it as an equality constraint

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i} \leq b \Longleftrightarrow a_{1} x_{1}+\cdots+a_{n} x_{n}+s=b, \quad s \geq 0 \tag{2}
\end{equation*}
$$

Similarly, for the greater-than-or-equal-to constraint, we can use an excess variable e ≥ 0 to rewrite it as an equality constraint

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i} \geq b \Longleftrightarrow a_{1} x_{1}+\cdots+a_{n} x_{n}-e=b, \quad e \geq 0 \tag{3}
\end{equation*}
$$

For a nonpositive variable, we use its opposite to replace it in the decision variables

$$
\begin{equation*}
x_{i} \leq 0 \Longleftrightarrow x_{i}^{\prime} \geq 0 \tag{4}
\end{equation*}
$$

If a variable is free (or unrestricted in sign), then we replace it with two nonnegative auxiliary variables

$$
\begin{equation*}
x_{i} \in \mathbb{R} \Longleftrightarrow x_{i}=x_{i}^{\prime}-x_{i}^{\prime \prime}, \quad x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0 . \tag{5}
\end{equation*}
$$

Example 1. The standard form of the following LO problem

$$
\begin{aligned}
& \max 3 x_{1}-5 x_{2}+7 x_{3} \\
& \text { s.t. } 2 x_{1}+4 x_{2}-x_{3} \geq-3 \text {, } \\
& 4 x_{1}-2 x_{2}+8 x_{3} \leq 7, \\
& 9 x_{1}+x_{2}+3 x_{3}=11 \text {, } \\
& x_{1} \in \mathbb{R} \text {, } \\
& x_{2} \leq 0 \text {, } \\
& x_{3} \geq 0 \text {. }
\end{aligned}
$$

is given by

$$
\begin{array}{rlrl}
\max & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}+5 x_{2}^{\prime}+7 x_{3} \\
\text { s.t. } 2 x_{1}^{\prime}-2 x_{1}^{\prime \prime}-4 x_{2}^{\prime}-x_{3}-e_{1} & =-3, \\
& 4 x_{1}^{\prime}-4 x_{1}^{\prime \prime}+2 x_{2}^{\prime}+8 x_{3}+s_{2} & =7, \\
& 9 x_{1}^{\prime}-9 x_{1}^{\prime \prime}-x_{2}^{\prime}+3 x_{3} & =11, \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{3}, e_{1}, s_{2} & \geq 0 .
\end{array}
$$

The standard form helps us to determine all variable values once we fix a subset of them to zero. To be precise, let N denote a subset of indices $\{1, \ldots, n\}$ corresponding to nonbasic variables, and B a subset of indices of basic variables, such that the values of all basic variables can be determined through the equality constraints, once all nonbasic variables are fixed to zero. Sometimes B is called a basis. Any solution obtained by fixing nonbasic variables to zero is called a basic solution. The values of the basic variables in a basic solution could be negative. If all basic variables have nonnegative values, then the basic solution is further called a basic feasible solution.

Using linear algebra terminology, we can also say that B is an index set for basic variables when the submatrix A_{B}, that is formed by columns of A with indices in B, is nonsingular. Consequently, the number of basic variables should be the same as the number of constraints, assuming that the matrix A has full row rank. The geometric intuition of considering basic variables is that they can represent vertices of the feasible region. To see this, you may think about solving a system of m equations as finding the unique intersection point of m hyperplanes when the matrix A_{B} has full rank m.

Example 2. By renaming the variables in Example 1, we can write it as

$$
\begin{array}{rlrl}
\max 3 x_{1}-3 x_{2}+5 x_{3}+7 x_{4} & \\
\text { s.t. } 2 x_{1}-2 x_{2}-4 x_{3}-x_{4}-x_{5} & =-3, \\
& 4 x_{1}-4 x_{2}+2 x_{3}+8 x_{4}+x_{6} & =7, \\
& 9 x_{1}-9 x_{2}-x_{3}+3 x_{4} & =11 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0 .
\end{array}
$$

We can set $B=\{4,5,6\}$ and $N=\{1,2,3\}$. In this case, by setting $x_{1}=x_{2}=x_{3}=0$, the last constraint tells us that $x_{4}=11 / 3$, which then implies

$$
\begin{aligned}
& x_{5}=3-x_{4}=-\frac{2}{3} \\
& x_{6}=7-8 x_{4}=-\frac{67}{3} .
\end{aligned}
$$

Here, as $x_{5}, x_{6}<0$, we have an infeasible basic solution.
Example 3. Consider the following LO problem:

$$
\begin{aligned}
\max & 5 x_{1}+5 x_{2}+3 x_{3} \\
\text { s.t. } \quad x_{1}+3 x_{2}+x_{3} & \leq 3, \\
-x_{1} & +3 x_{3} \leq 2, \\
2 x_{1}-x_{2}+2 x_{3} & \leq 4, \\
2 x_{1}+3 x_{2}-x_{3} & \leq 2, \\
x_{1}, x_{2}, x_{3} & \geq 0 .
\end{aligned}
$$

We introduce slack variables $x_{4}, x_{5}, x_{6}, x_{7} \geq 0$, the values of which can be uniquely determined by those of x_{1}, x_{2}, x_{3} as

$$
\begin{aligned}
z & =5 x_{1}+5 x_{2}+3 x_{3} \\
\hline x_{4} & =3-x_{1}-3 x_{2}-x_{3} \\
x_{5} & =2+x_{1} \\
x_{6} & =4-2 x_{1}+3 x_{3}-2 x_{3} \\
x_{7} & =2-2 x_{1}-3 x_{2}+3 x_{3} .
\end{aligned}
$$

If we set $B=\{4,5,6,7\}$ and $N=\{1,2,3\}$, then we can get a basic solution $x_{1}=x_{2}=x_{3}=$ $0, x_{4}=3, x_{5}=2, x_{6}=4$, and $x_{7}=2$, which is feasible to the LO problem. The objective value, which we denote as z, is 0 at this basic feasible solution (bfs).

2 Simplex Method and Tableau

To move from a basic feasible solution to a "better" solution, we can select a nonbasic variable with positive "impact" on the objective value to become a basic variable. The new basic variable is called an entering variable, as it enters the basis, while the new nonbasic variable is called a leaving variable. We use Example 3 to illustrate the procedure as follows.

Example 3 (continued). As both the nonbasic variables x_{1} and x_{2} have the largest coefficient 5 in the z-row, we pick x_{1} to be the entering variable. To be more specific, we want to increase the value of x_{1} until one of the basic variables $x_{4}, x_{5}, x_{6}, x_{7}$ reaches 0 (and thus becomes nonbasic), which is then the leaving variable.
Iteration 1. We can do a ratio test based on the nonnegativity conditions:

$$
\begin{aligned}
& x_{4}=3-x_{1} \geq 0 \\
& x_{5}=2+x_{1} \geq 0, \\
& x_{6}=4-2 x_{1} \geq 0, \\
& x_{7}=2-2 x_{1} \geq 0 .
\end{aligned}
$$

The largest possible increase corresponds to the smallest ratio of the free coefficient to the absolute value of the coefficient for x_{1} in the same row, assuming that the coefficient for x_{1} is negative. As the ratios are 3,2,1 for variables x_{4}, x_{6}, x_{7}, respectively, x_{7} is then the leaving variable. We see that

$$
x_{1}=1-\frac{3}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{7} .
$$

By substituting this expression for x_{1} in the other rows, we obtain the following new solution:

$$
\begin{aligned}
z & =5-\frac{5}{2} x_{2}+\frac{11}{2} x_{3}-\frac{5}{2} x_{7} \\
\hline x_{1} & =1-\frac{3}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{7} \\
x_{4} & =2-\frac{3}{2} x_{2}-\frac{3}{2} x_{3}+\frac{1}{2} x_{7} \\
x_{5} & =3-\frac{3}{2} x_{2}-\frac{5}{2} x_{3}-\frac{1}{2} x_{7}, \\
x_{6} & =2+4 x_{2}-3 x_{3}+x_{7}
\end{aligned}
$$

Here, the basic variables are indicated by $B=\{1,4,5,6\}$ and nonbasic variables by $N=$ $\{2,3,7\}$. Now since we still have one variable x_{3} with positive coefficient in the z-row, we continue this procedure by setting it to be the entering variable.
Iteration 2. In the ratio test, we see that x_{6} has the smallest ratio $\frac{2}{3}$ and thus should be the leaving variable. Using the relation

$$
x_{3}=\frac{2}{3}+\frac{4}{3} x_{2}-\frac{1}{3} x_{6}+\frac{1}{3} x_{7},
$$

we get

$$
\begin{aligned}
& z=\frac{26}{3}+\frac{29}{6} x_{2}-\frac{2}{3} x_{7}-\frac{11}{6} x_{6} \\
& \hline x_{3}=\frac{2}{3}+\frac{4}{3} x_{2}+\frac{1}{3} x_{7}-\frac{1}{3} x_{6} \\
& x_{1}=\frac{4}{3}-\frac{5}{6} x_{2}-\frac{1}{3} x_{7}-\frac{1}{6} x_{6} \\
& x_{4}=1-\frac{7}{2} x_{2} \\
& x_{5}=\frac{4}{3}-\frac{1}{6} x_{6} \\
& x_{2}-\frac{4}{3} x_{7}+\frac{5}{6} x_{6} .
\end{aligned}
$$

Now x_{2} has a positive coefficient in the z-row, so we continue the procedure.
Iteration 3. We determine the leaving variable through the ratio test and find x_{5} is the one with the smallest ratio $\frac{8}{29}$. By expressing x_{2} through x_{5}, x_{6}, x_{7}, we get

$$
\begin{array}{r}
z=10-2 x_{7}-\frac{x_{6}}{z} \frac{x_{5}}{} \begin{array}{r}
x_{2}
\end{array}=\frac{8}{29}-\frac{8}{29} x_{7}+\frac{5}{29} x_{6}-\frac{6}{29} x_{5} \\
x_{3}=\frac{30}{29}-\frac{1}{29} x_{7}-\frac{3}{29} x_{6}-\frac{8}{29} x_{5} \\
x_{1}
\end{array}=\frac{32}{29}-\frac{3}{29} x_{7}-\frac{9}{29} x_{6}+\frac{5}{29} x_{5}, ~ \frac{21}{29} x_{7}-\frac{3}{29} x_{6}+\frac{21}{29} x_{5} .
$$

All coefficients in the z-row are now negative. Hence, changing the value of any nonbasic variables will decrease the objective function value. We conclude that we have found an optimal solution for our LO problem, which has the value

$$
x_{1}=\frac{32}{29}, x_{2}=\frac{8}{29}, x_{3}=\frac{30}{29}
$$

and all other variables being 0 . The optimal objective value is $z=10$.
The above computation procedure can be done more compactly in a tableau format. Without renaming the variables, we can also use BV_{k} and NV_{k} to indicate the basic and nonbasic variables in iteration k. We use the LO model from the baby carriers production problem as an example below.

Example 4. Consider the LO problem

$$
\begin{array}{rlrl}
\max & z=15 x_{1} & +25 x_{2} & \\
\text { s.t. } & x_{1}+x_{2}+s_{1} & & =450, \\
& & x_{2} & +s_{2} \\
& =300, \\
4 x_{1} & +5 x_{2} & & =2,000, \\
x_{1} & & s_{3}, x_{2}, s_{1}, s_{2}, s_{3}, s_{4} & \geq 0
\end{array}
$$

We can write it in a tableau format as follows.

z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	$r h s$	basis
1	-15	-25	0	0	0	0	0	z
0	1	1	1	0	0	0	450	s_{1}
0	0	1	0	1	0	0	300	s_{2}
0	4	5	0	0	1	0	2,000	s_{3}
0	1	0	0	0	0	1	350	s_{4}

Here, rhs stands for right-hand side values, and the basis stands for the basic variables corresponding to the rows. We use the convention that for the $z-r o w, z$ is always in the basis and we revert the sign of the objective coefficients (by moving all variables in $z=15 x_{1}+25 x_{2}$ to the left-hand side). In this initial setup, the basic feasible solution (bfs) consists of basic variables $\mathrm{BV}_{0}=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ with values $s_{1}=450, s_{2}=300, s_{3}=2,000, s_{4}=350$, and nonbasic variables $\mathrm{NV}_{0}=\left\{x_{1}, x_{2}\right\}$ with values all being 0 .
Iteration 1. To increase the value of z, we can increase the value of a nonbasic variable, which is called a pivot variable, and the corresponding column is called a pivot column in the tableau. As our objective function is linear, it is reasonable to select a nonbasic variable with the largest objective coefficient to be the pivot variable, which in this case is x_{2}. As before, we conduct a ratio test to detect the pivot row as follows.

\downarrow									
z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	rhs	basis	ratio
1	-15	-25	0	0	0	0	0	z	
0	1	1	1	0	0	0	450	s_{1}	450
0	0	1	0	1	0	0	300	s_{2}	300
0	4	5	0	0	1	0	2,000	s_{3}	400
0	1	0	0	0	0	1	350	s_{4}	-

Now we can perform elementary row operations involving the pivot row with the goal of turning all pivot column entries in the non-pivot rows into 0 and the pivot row into 1 . In our example, we multiply the pivot row by $25,-1$, and -5 , add the results to rows 0,1 , and 3 , respectively.

z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	$r h s$	basis
1	-15	0	0	25	0	0	7,500	z
0	1	0	1	-1	0	0	150	s_{1}
0	0	1	0	1	0	0	300	x_{2}
0	4	0	0	-5	1	0	500	s_{3}
0	1	0	0	0	0	1	350	s_{4}

After the first iteration, the bfs consists of $\mathrm{BV}_{1}=\left\{s_{1}, x_{2}, s_{3}, s_{4}\right\}$ with values $s_{1}=150, x_{2}=$
$300, s_{3}=500, s_{4}=350$, with $\mathrm{NV}_{1}=\left\{x_{1}, s_{2}\right\}$ with values 0 . The objective value $z=7,500$. Iteration 2. Now the variable x_{1} has the largest coefficient in the objective, so we repeat the ratio test and find the pivot row.

\downarrow									
z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	rhs	basis	ratio
1	-15	0	0	25	0	0	7,500	z	
0	1	0	1	-1	0	0	150	s_{1}	150
0	0	1	0	1	0	0	300	x_{2}	-
0	4	0	0	-5	1	0	500	s_{3}	125
0	1	0	0	0	0	1	350	s_{4}	350

We perform the elementary row operations and get the updated tableau as follows.

z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	$r h s$	basis
1	0	0	0	$25 / 4$	$15 / 4$	0	9,375	z
0	0	0	1	$1 / 4$	$-1 / 4$	0	25	s_{1}
0	0	1	0	1	0	0	300	x_{2}
0	1	0	0	$-5 / 4$	$1 / 4$	0	125	x_{1}
0	0	0	0	$5 / 4$	$-1 / 4$	1	225	s_{4}

Now the bfs consists of $\mathrm{BV}_{2}=\left\{s_{1}, x_{2}, x_{1}, s_{4}\right\}$ with values $s_{1}=25, x_{2}=300, x_{1}=125$, $s_{4}=225$, and $\mathrm{NV}_{2}=\left\{s_{2}, s_{3}\right\}$ with values 0 . The objective value $z=9,375$. Note that increasing the value of any nonbasic variable would now decrease the objective value, which can be seen from the nonnegativity of the coefficients in the z-row of the tableau. We have thus found an optimal solution to the LO problem. From Figure 1, we see that the above algorithmic procedure corresponds to moving from point $(0,0)$ to $(0,300)$, and then to $(125,300)$ in the (x_{1}, x_{2})-plane.

Remark. In a simplex tableau (of a LO maximization problem), the basic feasible solution is optimal if all nonbasic variables have nonnegative coefficients in the z-row.

Recall that a LO problem can be unbounded. We would like to detect unboundedness from the simplex tableau as described in the next example.

Figure 1: Feasible region and objective direction of Example 4

Example 5. Consider the following tableau in a LO maximization problem.

\downarrow								
z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	rhs	basis
1	25	-4	0	0	0	0	90	z
0	14	-1	1	0	0	0	25	s_{1}
0	1	0	0	1	0	0	30	s_{2}
0	-5	-14	0	0	1	0	12	s_{3}
0	4	-7	0	0	0	1	22	s_{4}

We see that by increasing the value of the nonbasic variable x_{2}, the objective value should increase. However, there is no restriction on how much x_{2} can increase (as no ratio test needs to be performed). This means that this LO problem is unbounded.

Remark. In a simplex tableau (of a LO maximization problem), the unboundedness is detected if there is a column with no positive entries.

3 Simplex Method Termination and Initialization

A natural question is whether simplex method can always find an optimal solution in finitely many steps/iterations. To answer this question, we need to note a special situa-
tion called degeneracy, where there is one or more basic variables equal to 0 . Degeneracy (or degenerate bfs) may lead to the cycling phenomenon as in the next example.

Example 6. Consider the LO problem

$$
\begin{aligned}
& \max 5 x_{1}+4 x_{2}-20 x_{3}-2 x_{4} \\
& \text { s.t. } \quad \frac{1}{4} x_{1}-\frac{1}{8} x_{2}+12 x_{3}+10 x_{4} \leq 0, \\
& \frac{1}{10} x_{1}+\frac{1}{20} x_{2}+\frac{1}{20} x_{3}+\frac{1}{5} x_{4} \leq 0 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 .
\end{aligned}
$$

The initial (iteration 0) tableau can be written as follows.

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	-5	-4	20	2	0	0	0	z
0	$\frac{1}{4}$	$-\frac{1}{8}$	12	10	1	0	0	x_{5}
0	$\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{5}$	0	1	0	x_{6}

We continue the simplex method.

- Iteration 1

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	0	$-\frac{13}{2}$	260	202	20	0	0	z
0	1	$-\frac{1}{2}$	48	40	4	0	0	x_{1}
0	0	$\frac{1}{10}$	$-\frac{19}{4}$	$-\frac{19}{5}$	$-\frac{2}{5}$	1	0	x_{6}

- Iteration 2

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	0	0	$-\frac{195}{4}$	-45	-6	65	0	z
0	1	0	$\frac{97}{4}$	21	2	5	0	x_{1}
0	0	1	$-\frac{95}{2}$	-38	-4	10	0	x_{2}

- Iteration 3

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	$\frac{195}{97}$	0	0	$-\frac{270}{97}$	$-\frac{192}{97}$	$\frac{7280}{97}$	0	z
0	$\frac{190}{97}$	1	0	$\frac{304}{97}$	$-\frac{8}{97}$	$\frac{1920}{97}$	0	x_{2}
0	$\frac{4}{97}$	0	1	$\frac{84}{97}$	$\frac{8}{97}$	$\frac{20}{97}$	0	x_{3}

- Iteration 4

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	$\frac{15}{4}$	$\frac{135}{152}$	0	0	$-\frac{39}{19}$	$\frac{1760}{19}$	0	z
0	$-\frac{1}{2}$	$-\frac{21}{76}$	1	0	$\frac{2}{19}$	$-\frac{100}{19}$	0	x_{3}
0	$\frac{5}{8}$	$\frac{97}{304}$	0	1	$-\frac{1}{38}$	$\frac{120}{19}$	0	x_{4}

- Iteration 5

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	-6	$-\frac{9}{2}$	$\frac{39}{2}$	0	0	-10	0	z
0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	1	0	5	0	x_{4}
0	$-\frac{19}{4}$	$-\frac{21}{8}$	$\frac{19}{2}$	0	1	-50	0	x_{5}

- Iteration 6

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	-5	-4	20	2	0	0	0	z
0	$\frac{1}{4}$	$-\frac{1}{8}$	12	10	1	0	0	x_{5}
0	$\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{5}$	0	1	0	x_{6}

Note that in iteration 6, we get the same tableau as we got in iteration 0 . Thus if we continue with the execution of the simplex method, we will keep repeating the calculations in iterations 0-6 and will never be able to leave the same solution.

To avoid cycling in the simplex method, we can use certain pivoting rule, which determines the pivoting variable at every degenerate solution. A conceptually useful rule is called Bland's rule: assuming that the variables are indexed, for example, by $1, \ldots, n$, we always choose the entering or leaving variable with the smallest index. We illustrate Bland's rule by applying it to Example 6.

Example 6 (continued). Applying Bland's rule leads to the same first 5 iterations, at the end of which we have the following tableau.

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	-6	$-\frac{9}{2}$	$\frac{39}{2}$	0	0	-10	0	z
0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	1	0	5	0	x_{4}
0	$-\frac{19}{4}$	$-\frac{21}{8}$	$\frac{19}{2}$	0	1	-50	0	x_{5}

Now the candidates for the entering variables are x_{1}, x_{2}, and x_{6}, so by Bland's rule we choose
x_{1} to enter the basis.

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	0	$-\frac{3}{2}$	$\frac{45}{2}$	12	0	50	0	z
0	1	$\frac{1}{2}$	$\frac{1}{2}$	2	0	10	0	x_{1}
0	0	$-\frac{1}{4}$	$\frac{95}{8}$	$\frac{19}{2}$	1	$-\frac{5}{2}$	0	x_{5}

After one more iteration, we see optimality from the tableau.

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	basis
1	3	0	24	18	0	80	0	z
0	2	1	1	4	0	20	0	x_{2}
0	$\frac{1}{2}$	0	$\frac{97}{8}$	$\frac{21}{2}$	1	$\frac{5}{2}$	0	x_{5}

In fact, the solution value is the same as the initial bfs, but the last tableau shows its optimality.
It can be shown that with Bland's rule, simplex method does not have the cycling phenomenon. The proof is a little involved, so we do not go into the details here. In practice, Bland's rule may not lead to efficient implementation of the simplex method. Other pivoting rules may be more favorable, such as the steepest edge rule, the random edge rule, or the lexicographic rule. The details can be found in [1].

Without cycling, the simplex method is guaranteed to terminate in finitely many iteration (with either an optimal bfs or a certificate for unboundedness). In fact, given a standard LO form with n variables and m constraints, there are at most $\binom{n}{m}$ possible simplex tableaus. This is because each tableau has a unique set of basic variables, the cardinality (i.e., size) of which is exactly m. By definition, we will not see the same basis twice unless cycling happens.

Theorem 1. If the simplex method does not have cycling, then it terminates with at most $\binom{n}{m}$ iterations.

Another issue is regarding how to find feasible solutions to the LO problem. We have seen that if we start with a bfs, then the simplex method can keep feasibility through the ratio tests. Therefore, it suffices for us to discuss initialization procedures for feasible solutions. Here, we describe two methods: the two-phase simplex method and the big-M simplex method.

The main idea of both methods is to "relax" the constraints by introducing artificial variables, and then try to find solutions where the artificial variables are all zero. To be
precise, for a standard form LO problem

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} a_{j i} x_{i}=b_{j}, \quad j=1, \ldots, m \tag{6}\\
& x_{i} \geq 0, \quad i=1, \ldots, n
\end{array}
$$

we define the following index subsets of $J:=\{1, \ldots, m\}: J^{+}:=\left\{j \in J: b_{j} \geq 0\right\}$, and $J^{-}:=\left\{j \in J: b_{j}<0\right\}$, representing the constraints that have positive or no violations, and those that have negative violations if we set $x=0$. Then the two-phase method first solves the first-phase feasibility problem

$$
\begin{array}{ll}
\min & \sum_{j \in J} u_{j} \\
\text { s.t. } & \sum_{i=1}^{n} a_{j i} x_{i}+u_{j}=b_{j}, \quad \forall j \in J^{+}, \\
& \sum_{i=1}^{n} a_{j i} x_{i}-u_{j}=b_{j}, \quad \forall j \in J^{-}, \tag{7}\\
& x_{i} \geq 0, \quad i=1, \ldots, n \\
& u_{j} \geq 0, \quad j=1, \ldots, m .
\end{array}
$$

Clearly, if we set $x=0$ and $u_{j}=\left|b_{j}\right|$ for $j=1, \ldots, m$, then (x, u) is a bfs to the problem (7). Moreover, the original problem (6) is feasible if and only if (7) has an optimal basic solution $\left(x^{\prime}, u^{\prime}\right)$ where $u_{1}^{\prime}, \ldots, u_{m}^{\prime}$ are all nonbasic variables. In this case, the objective value of (7) will also be 0 , meaning that we do not need these artificial variables to make the original problem (6) feasible. Then we can use the solution x^{\prime} as a bfs to (6). In practice, if an equality constraint j in (6) is converted from an inequality constraint, then we can directly take the artificial variable u_{j} to be the slack or excess variable. We illustrate the two-phase simplex method by the following example.

Example 7. Consider the following LO problem:

$$
\begin{aligned}
\max & 5 x_{1}+10 x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2}
\end{aligned}=4 .
$$

We can convert into the standard form (by introducing the slack variable $s_{2} \geq 0$) and then
construct the first-phase feasibility problem as

$$
\begin{aligned}
\max & -a_{1} \\
\text { s.t. } 2 x_{1}+x_{2}+a_{1} & =4 \\
x_{1}+2 x_{2}+s_{2} & =5 \\
x_{1}, x_{2}, s_{2}, a_{1} & \geq 0 .
\end{aligned}
$$

We start with the bfs $\left(x_{1}, x_{2}, s_{2}, a_{1}\right)=(0,0,5,4)$ and use the simplex method as follows.

- Iteration 0 (raw)

z	x_{1}	x_{2}	a_{1}	s_{2}	rhs	basis
1	0	0	$\mathbf{1}$	0	0	z
0	2	1	1	0	4	a_{1}
0	1	2	0	1	5	s_{2}

As a basic variable, a_{1} should not have a nonzero coefficient in the z-row. We need to get a correct tableau by a row operation.

- Iteration 0

z	x_{1}	x_{2}	a_{1}	s_{2}	rhs	basis
1	-2	-1	0	0	-4	z
0	2	1	1	0	4	a_{1}
0	1	2	0	1	5	s_{2}

- Iteration 1

z	x_{1}	x_{2}	a_{1}	s_{2}	rhs	basis
1	0	0	1	0	$\mathbf{0}$	z
0	1	$1 / 2$	$1 / 2$	0	2	x_{1}
0	0	$3 / 2$	$-1 / 2$	1	3	s_{2}

The tableau is optimal and we can check that $\left(x_{1}, x_{2}, s_{2}\right)=(2,0,3)$ is a bfs of the original problem. Thus the first-phase feasibility problem is solved.
We start the second phase as follows.

- Iteration 0 (raw)

z	x_{1}	x_{2}	s_{2}	$r h s$	basis
1	-5	-10	0	0	z
0	1	$1 / 2$	0	2	x_{1}
0	0	$3 / 2$	1	3	s_{2}

As x_{1} is a basic variable, its coefficient in the z-row must be zero. We can correct this again by a row operation.

- Iteration 0

z	x_{1}	x_{2}	s_{2}	rhs	basis
1	0	$-15 / 2$	0	10	z
0	1	$1 / 2$	0	2	x_{1}
0	0	$3 / 2$	1	3	s_{2}

The entering variable is x_{2} and the ratio test determines that s_{2} should be leaving.

- Iteration 1

z	x_{1}	x_{2}	s_{2}	rhs	basis
1	0	0	5	25	z
0	1	0	$-1 / 3$	1	x_{1}
0	0	1	$2 / 3$	2	x_{2}

The tableau is optimal. We have solved the second phase problem.
From the last tableau, we can see that an optimal solution is $\left(x_{1}^{*}, x_{2}^{*}\right)=(1,2)$, with the optimal value $z^{*}=25$.

The big-M method defines a big coefficient $M \gg 0$ for the artificial variables in the objective function. To be precise, for the problem (6), we pick a large constant $M>0$ and solve the following problem

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} c_{i} x_{i}-M \sum_{j=1}^{m} u_{j} \\
\text { s.t. } & \sum_{i=1}^{n} a_{j i} x_{i}+u_{j}=b_{j}, \quad \forall j \in J^{+}, \\
& \sum_{i=1}^{n} a_{j i} x_{i}-u_{j}=b_{j}, \quad \forall j \in J^{-}, \tag{8}\\
& x_{i} \geq 0, \quad i=1, \ldots, n \\
& u_{j} \geq 0, \quad j=1, \ldots, m .
\end{array}
$$

The subsets J^{+}and J^{-}are defined similarly as in the two-phase method, so we can choose the obvious bfs $x_{i}=0$ for $i=1, \ldots, n$ and $u_{j}=\left|b_{j}\right|$ for $j=1, \ldots, m$, as our starting point. We say that M is sufficiently large, if in the simplex iterations, the sign of any linear expression involving M would only depend on the coefficient of M. For example, $-M+10<0$ as M has a coefficient of -1 , and $2 M+30>M+100$ as the coefficient of M on the left-hand side is 2 , which is greater than 1 , the coefficient of M on the right-hand side. It can be shown that assuming M is sufficiently large,

- if the problem (8) has an optimal solution $\left(x^{*}, u^{*}\right)$ with $u^{*}=0$, then x^{*} is an optimal solution to (6);
- if the problem (8) has an optimal solution $\left(x^{*}, u^{*}\right)$ with $u^{*} \neq 0,(6)$ is infeasible;
- if the problem (8) is unbounded, then so is (6).

We illustrate below the big-M method on the same problem that appeared in Example 7.

Example 8. For the problem

$$
\begin{aligned}
\max \quad 5 x_{1}+10 x_{2} & \\
\text { s.t. } 2 x_{1}+x_{2} & =4 \\
& x_{1}+2 x_{2}
\end{aligned} \leq 5
$$

the big-M formulation is

$$
\begin{array}{rrr}
\max & 5 x_{1}+10 x_{2}-M a_{1} \\
\text { s.t. } 2 x_{1}+x_{2}+ & a_{1}=4 \\
& x_{1}+2 x_{2}+s_{2}=5 \\
x_{1}, x_{2}, s_{2}, a_{1} & \geq 0 .
\end{array}
$$

- Iteration 0 (raw)

z	x_{1}	x_{2}	a_{1}	s_{2}	rhs	basis
1	-5	-10	M	0	0	z
0	2	1	1	0	4	a_{1}
0	1	2	0	1	5	s_{2}

We need to eliminate the coefficients of basic variables in the z-row through row operations.

- Iteration 0

z	x_{1}	x_{2}	a_{1}	s_{2}	$r h s$	basis
1	$-5-2 M$	$-10-M$	0	0	$-4 M$	z
0	2	1	1	0	4	a_{1}
0	1	2	0	1	5	s_{2}

Here, x_{1} should be the entering variable because $-5-2 M<-10-M$ for sufficiently large M. By the ratio test, a_{1} should be leaving.

- Iteration 1

z	x_{1}	x_{2}	a_{1}	s_{2}	rhs	basis
1	0	$-15 / 2$	$5 / 2+M$	0	10	z
0	1	$1 / 2$	$1 / 2$	0	2	x_{1}
0	0	$3 / 2$	$-1 / 2$	1	3	s_{2}

Now x_{2} enters and s_{2} leaves the basis.

- Iteration 2

z	x_{1}	x_{2}	a_{1}	s_{2}	$r h s$	basis
1	0	0	M	5	25	z
0	1	0	$2 / 3$	$-1 / 3$	1	x_{1}
0	0	1	$-1 / 3$	$2 / 3$	2	x_{2}

We terminate the simplex method as all coefficients in the z-row are nonnegative.
We have found an optimal solution $\left(x_{1}^{*}, x_{2}^{*}\right)=(1,2)$. It is feasible to the original problem because $a_{1}^{*}=0$ is nonbasic. The optimal value is $z^{*}=25$.

4 Simplex Method in the Matrix Form

It may be conceptually simpler to consider the simplex method in the following matrix form. The standard form can be written as

$$
\begin{align*}
\max & c^{\top} x \\
\text { s.t. } & A x=b, \tag{9}\\
& x \geq 0 .
\end{align*}
$$

By using the index sets B (for basic variables) and N (for nonbasic variables), we use the subscript notation to indicate the data associated with these variables. For example, if $B=\{1,3,4\}$, then $c_{B}=\left(c_{1}, c_{3}, c_{4}\right)$ is a vector consisting of components of the vector c with indices in B. Thus given B and N, the standard form can be rewritten as

$$
\begin{array}{ll}
\max & {\left[c_{B}^{\top}, c_{N}^{\top}\right]\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right]} \\
\text { s. t. } & {\left[A_{B}, A_{N}\right]\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right]=b, \Longleftrightarrow \begin{array}{ll}
\max & c_{B}^{\top} x_{B}+c_{N}^{\top} x_{N} \\
& \text { s.t. } \\
A_{B} x_{B}+A_{N} x_{N}=b \\
& {\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right] \geq 0 .}
\end{array}} \tag{10}
\end{array}
$$

Then each iteration of the simplex method can be written in the matrix form:

$$
\begin{align*}
z & =c_{B}^{\top} A_{B}^{-1} b+r^{\top} x_{N} \tag{11}\\
\hline x_{B} & =p+Q x_{N}
\end{align*}
$$

where $p=A_{B}^{-1} b, Q=\left[q_{i j}\right]=-A_{B}^{-1} A_{N}$, and the vector $r:=c_{N}-\left(c_{B}^{\top} A_{B}^{-1} A_{N}\right)^{\top}$ is sometimes called the reduced cost. Recall that the definition of a basis requires the submatrix A_{B} to be nonsingular, which ensures that the inverse A_{B}^{-1} is well-defined. Equivalently,
we can write the tableau in each iteration as

z	x_{B}	x_{N}	$r h s$
1	0	$-r$	$c_{B}^{\top} A_{B}^{-1} b$
0	I	$-Q$	p

where I in the tableau is the m-by- m identity matrix.
The optimality criterion for the simplex method (for a LO maximization problem) can be restated as $r \leq 0$, and if any $r_{k}>0$, then x_{k} should be the entering variable. The leaving variable is determined by the ratio test, i.e., any x_{j} such that

$$
\begin{equation*}
q_{j k}<0 \quad \text { and } \quad-\frac{p_{j}}{q_{j k}}=\min \left\{-\frac{p_{i}}{q_{i k}}: q_{i k}<0, i=1, \ldots, m\right\} . \tag{13}
\end{equation*}
$$

The unboundedness can be detected if for all $i=1, \ldots, m, q_{i k} \geq 0$. Otherwise, we set $B \leftarrow B \cup\{j\} \backslash\{k\}$ and continue. We use the data in Example 3 to illustrate the procedure in the matrix form.

Example 9. We write the standard form of the LO problem

$$
\begin{aligned}
& \max 5 x_{1}+5 x_{2}+3 x_{3} \\
& \text { s.t. } x_{1}+3 x_{2}+x_{3} \leq 3 \text {, } \\
& -x_{1} \quad+3 x_{3} \leq 2 \text {, } \\
& 2 x_{1}-x_{2}+2 x_{3} \leq 4 \text {, } \\
& 2 x_{1}+3 x_{2}-x_{3} \leq 2 \text {, } \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

with slack variables $x_{4}, x_{5}, x_{6}, x_{7} \geq 0$ through the matrix and the vectors

$$
A=\left[\begin{array}{ccccccc}
1 & 3 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 3 & 0 & 1 & 0 & 0 \\
2 & -1 & 2 & 0 & 0 & 1 & 0 \\
2 & 3 & -1 & 0 & 0 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
3 \\
2 \\
4 \\
2
\end{array}\right], \quad c=\left[\begin{array}{l}
5 \\
3 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Initially, we set $B \leftarrow B_{0}=\{4,5,6,7\}$ and $N \leftarrow N_{0}=\{1,2,3\}$, then we have

$$
A_{B}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad A_{N}=\left[\begin{array}{ccc}
1 & 3 & 1 \\
-1 & 0 & 3 \\
2 & -1 & 2 \\
2 & 3 & -1
\end{array}\right], \quad c_{B}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \quad c_{N}=\left[\begin{array}{l}
5 \\
5 \\
3
\end{array}\right] .
$$

In particular,
$p=A_{B}^{-1} b=\left[\begin{array}{l}3 \\ 2 \\ 4 \\ 2\end{array}\right], \quad Q=-A_{B}^{-1} A_{N}=\left[\begin{array}{ccc}-1 & -3 & -1 \\ 1 & 0 & -3 \\ -2 & 1 & -2 \\ -2 & -3 & 1\end{array}\right], \quad r=c_{N}-\left(c_{B}^{\top} A_{B}^{-1} A_{N}\right)^{\top}=\left[\begin{array}{l}5 \\ 5 \\ 3\end{array}\right]$.
Iteration 1. We pick x_{1} as an entering variable, and the ratio test determines that x_{7} is a leaving variable, Thus $B_{1}=B_{0} \cup\{1\} \backslash\{7\}=\{1,4,5,6\}$, and consequently $N_{1}=\{2,3,7\}$. Now setting $B \leftarrow B_{1}$ and $N \leftarrow N_{1}$, we get
$p=A_{B}^{-1} b=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 2\end{array}\right], \quad Q=-A_{B}^{-1} A_{N}=\left[\begin{array}{ccc}-\frac{3}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -\frac{3}{2} & -\frac{5}{2} & -\frac{1}{2} \\ 4 & -3 & 1\end{array}\right], \quad r=c_{N}-\left(c_{B}^{\top} A_{B}^{-1} A_{N}\right)^{\top}=\left[\begin{array}{c}-\frac{5}{2} \\ \frac{11}{2} \\ -\frac{5}{2}\end{array}\right]$.
Iteration 2. Now x_{3} is the new entering variable, and by the ratio test, x_{6} is leaving. Thus $B_{2}=B_{1} \cup\{3\} \backslash\{6\}=\{1,3,4,5\}$, and consequently $N_{2}=\{2,6,7\}$. Now setting $B \leftarrow B_{2}$ and $N \leftarrow N_{2}$, we get
$p=A_{B}^{-1} b=\left[\begin{array}{l}\frac{2}{3} \\ \frac{4}{3} \\ 1 \\ \frac{4}{3}\end{array}\right], \quad Q=-A_{B}^{-1} A_{N}=\left[\begin{array}{ccc}\frac{4}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{5}{6} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{7}{2} & +\frac{1}{2} & 0 \\ -\frac{29}{6} & \frac{5}{6} & -\frac{4}{3}\end{array}\right], \quad r=c_{N}-\left(c_{B}^{\top} A_{B}^{-1} A_{N}\right)^{\top}=\left[\begin{array}{c}\frac{29}{6} \\ -\frac{11}{6} \\ -\frac{2}{3}\end{array}\right]$.
Iteration 3. The variable x_{2} is entering and by the ratio test x_{5} is leaving. Thus $B_{3}=B_{2} \cup$ $\{2\} \backslash\{5\}=\{1,2,3,4\}$, and consequently $N_{2}=\{5,6,7\}$. Now setting $B \leftarrow B_{3}$ and $N \leftarrow$ N_{3}, we get
$p=A_{B}^{-1} b=\left[\begin{array}{c}\frac{8}{29} \\ \frac{30}{29} \\ \frac{32}{29} \\ \frac{1}{29}\end{array}\right], \quad Q=-A_{B}^{-1} A_{N}=\left[\begin{array}{ccc}-\frac{6}{29} & \frac{5}{29} & -\frac{8}{29} \\ -\frac{8}{29} & -\frac{3}{29} & -\frac{1}{29} \\ \frac{5}{29} & -\frac{9}{29} & -\frac{3}{29} \\ \frac{21}{29} & -\frac{3}{29} & \frac{28}{29}\end{array}\right], \quad r=c_{N}-\left(c_{B}^{\top} A_{B}^{-1} A_{N}\right)^{\top}=\left[\begin{array}{c}-1 \\ -1 \\ -2\end{array}\right]$.
As $r \leq 0$, we have found an optimal solution $x^{*}=(32 / 29,8 / 29,30 / 29,0,0,0,0)$ with the
optimal value $z^{*}=10$.

References

[1] Matous̆ek, Jiří, and Bernd Gärtner. Understanding and using linear programming. Vol. 1. Berlin: Springer, 2007.

