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1 Standard Form of Linear Optimization (LO)

In graphical solutions for LO problems with two variables, we can find optimal solu-
tions on vertices (the corner points). This observation can be more formally exploited
by the simplex method. Before we present the algorithm, it is beneficial to consider stan-
dard forms of LO models, which have the following form.

max
n

∑
j=1

cjxj

s. t.
n

∑
j=1

aijxj = bi, i = 1, . . . , m,

x1, · · · , xn ≥ 0.

(1)

Namely, we only have linear equality constraints and variable nonnegativity condi-
tions in the standard form. Any LO formulation can be converted into the standard
form by introducing auxiliary variables when necessary. For a less-than-or-equal-to
constraint, we can use a slack variable s ≥ 0 to rewrite it as an equality constraint

n

∑
i=1

aixi ≤ b ⇐⇒ a1x1 + · · ·+ anxn + s = b, s ≥ 0. (2)

Similarly, for the greater-than-or-equal-to constraint, we can use an excess variable e ≥ 0
to rewrite it as an equality constraint

n

∑
i=1

aixi ≥ b ⇐⇒ a1x1 + · · ·+ anxn − e = b, e ≥ 0. (3)

For a nonpositive variable, we use its opposite to replace it in the decision variables

xi ≤ 0 ⇐⇒ x′i ≥ 0. (4)
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If a variable is free (or unrestricted in sign), then we replace it with two nonnegative
auxiliary variables

xi ∈ R ⇐⇒ xi = x′i − x′′i , x′i, x′′i ≥ 0. (5)

Example 1. The standard form of the following LO problem

max 3x1 − 5x2 + 7x3

s. t. 2x1 + 4x2 − x3 ≥ −3,
4x1 − 2x2 + 8x3 ≤ 7,
9x1 + x2 + 3x3 = 11,

x1 ∈ R,
x2 ≤ 0,
x3 ≥ 0.

is given by

max 3x′1 − 3x′′1 + 5x′2 + 7x3

s. t. 2x′1 − 2x′′1 − 4x′2 − x3 − e1 = −3,
4x′1 − 4x′′1 + 2x′2 + 8x3 + s2 = 7,
9x′1 − 9x′′1 − x′2 + 3x3 = 11,

x′1, x′′1 , x′2, x3, e1, s2 ≥ 0.

The standard form helps us to determine all variable values once we fix a subset of
them to zero. To be precise, let N denote a subset of indices {1, . . . , n} corresponding
to nonbasic variables, and B a subset of indices of basic variables, such that the values
of all basic variables can be determined through the equality constraints, once all non-
basic variables are fixed to zero. Sometimes B is called a basis. Any solution obtained
by fixing nonbasic variables to zero is called a basic solution. The values of the basic
variables in a basic solution could be negative. If all basic variables have nonnegative
values, then the basic solution is further called a basic feasible solution.

Using linear algebra terminology, we can also say that B is an index set for basic
variables when the submatrix AB, that is formed by columns of A with indices in B, is
nonsingular. Consequently, the number of basic variables should be the same as the
number of constraints, assuming that the matrix A has full row rank. The geometric
intuition of considering basic variables is that they can represent vertices of the feasible
region. To see this, you may think about solving a system of m equations as finding the
unique intersection point of m hyperplanes when the matrix AB has full rank m.
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Example 2. By renaming the variables in Example 1, we can write it as

max 3x1 − 3x2 + 5x3 + 7x4

s. t. 2x1 − 2x2 − 4x3 − x4 − x5 = −3,
4x1 − 4x2 + 2x3 + 8x4 + x6 = 7,
9x1 − 9x2 − x3 + 3x4 = 11,

x1, x2, x3, x4, x5, x6 ≥ 0.

We can set B = {4, 5, 6} and N = {1, 2, 3}. In this case, by setting x1 = x2 = x3 = 0, the
last constraint tells us that x4 = 11/3, which then implies

x5 = 3− x4 = −2
3

,

x6 = 7− 8x4 = −67
3

.

Here, as x5, x6 < 0, we have an infeasible basic solution.

Example 3. Consider the following LO problem:

max 5x1 + 5x2 + 3x3

s. t. x1 + 3x2 + x3 ≤ 3,
−x1 + 3x3 ≤ 2,
2x1 − x2 + 2x3 ≤ 4,
2x1 + 3x2 − x3 ≤ 2,

x1, x2, x3 ≥ 0.

We introduce slack variables x4, x5, x6, x7 ≥ 0, the values of which can be uniquely determined
by those of x1, x2, x3 as

z = 5x1 + 5x2 + 3x3

x4 = 3 − x1 − 3x2 − x3,
x5 = 2 + x1 − 3x3,
x6 = 4 − 2x1 + x2 − 2x3,
x7 = 2 − 2x1 − 3x2 + x3.

If we set B = {4, 5, 6, 7} and N = {1, 2, 3}, then we can get a basic solution x1 = x2 = x3 =

0, x4 = 3, x5 = 2, x6 = 4, and x7 = 2, which is feasible to the LO problem. The objective
value, which we denote as z, is 0 at this basic feasible solution (bfs).
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2 Simplex Method and Tableau

To move from a basic feasible solution to a “better” solution, we can select a nonbasic
variable with positive “impact” on the objective value to become a basic variable. The
new basic variable is called an entering variable, as it enters the basis, while the new non-
basic variable is called a leaving variable. We use Example 3 to illustrate the procedure
as follows.

Example 3 (continued). As both the nonbasic variables x1 and x2 have the largest coefficient 5
in the z-row, we pick x1 to be the entering variable. To be more specific, we want to increase the
value of x1 until one of the basic variables x4, x5, x6, x7 reaches 0 (and thus becomes nonbasic),
which is then the leaving variable.
Iteration 1. We can do a ratio test based on the nonnegativity conditions:

x4 = 3 − x1 ≥ 0,
x5 = 2 + x1 ≥ 0,
x6 = 4 − 2x1 ≥ 0,
x7 = 2 − 2x1 ≥ 0.

The largest possible increase corresponds to the smallest ratio of the free coefficient to the ab-
solute value of the coefficient for x1 in the same row, assuming that the coefficient for x1 is
negative. As the ratios are 3, 2, 1 for variables x4, x6, x7, respectively, x7 is then the leaving
variable. We see that

x1 = 1− 3
2

x2 +
1
2

x3 −
1
2

x7.

By substituting this expression for x1 in the other rows, we obtain the following new solution:

z = 5 − 5
2 x2 + 11

2 x3 − 5
2 x7

x1 = 1 − 3
2 x2 + 1

2 x3 − 1
2 x7,

x4 = 2 − 3
2 x2 − 3

2 x3 + 1
2 x7,

x5 = 3 − 3
2 x2 − 5

2 x3 − 1
2 x7,

x6 = 2 + 4x2 − 3x3 + x7.

Here, the basic variables are indicated by B = {1, 4, 5, 6} and nonbasic variables by N =

{2, 3, 7}. Now since we still have one variable x3 with positive coefficient in the z-row, we
continue this procedure by setting it to be the entering variable.
Iteration 2. In the ratio test, we see that x6 has the smallest ratio 2

3 and thus should be the
leaving variable. Using the relation

x3 =
2
3
+

4
3

x2 −
1
3

x6 +
1
3

x7,
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we get
z = 26

3 + 29
6 x2 − 2

3 x7 − 11
6 x6

x3 = 2
3 + 4

3 x2 + 1
3 x7 − 1

3 x6,
x1 = 4

3 −
5
6 x2 − 1

3 x7 − 1
6 x6,

x4 = 1 − 7
2 x2 + 1

2 x6,
x5 = 4

3 −
29
6 x2 − 4

3 x7 + 5
6 x6.

Now x2 has a positive coefficient in the z-row, so we continue the procedure.
Iteration 3. We determine the leaving variable through the ratio test and find x5 is the one
with the smallest ratio 8

29 . By expressing x2 through x5, x6, x7, we get

z = 10 − 2x7 − x6 − x5

x2 = 8
29 −

8
29 x7 + 5

29 x6 − 6
29 x5,

x3 = 30
29 −

1
29 x7 − 3

29 x6 − 8
29 x5,

x1 = 32
29 −

3
29 x7 − 9

29 x6 + 5
29 x5,

x4 = 1
29 + 28

29 x7 − 3
29 x6 + 21

29 x5.

All coefficients in the z-row are now negative. Hence, changing the value of any nonbasic
variables will decrease the objective function value. We conclude that we have found an optimal
solution for our LO problem, which has the value

x1 =
32
29

, x2 =
8

29
, x3 =

30
29

,

and all other variables being 0. The optimal objective value is z = 10.

The above computation procedure can be done more compactly in a tableau format.
Without renaming the variables, we can also use BVk and NVk to indicate the basic
and nonbasic variables in iteration k. We use the LO model from the baby carriers
production problem as an example below.

Example 4. Consider the LO problem

max z = 15x1 + 25x2

s. t. x1 + x2 + s1 = 450,
x2 + s2 = 300,

4x1 + 5x2 + s3 = 2, 000,
x1 + s4 = 350,

x1, x2, s1, s2, s3, s4 ≥ 0.

5



Operations Research 1 (ISEN 320-501) Fall 2023

We can write it in a tableau format as follows.

z x1 x2 s1 s2 s3 s4 rhs basis
1 −15 −25 0 0 0 0 0 z
0 1 1 1 0 0 0 450 s1

0 0 1 0 1 0 0 300 s2

0 4 5 0 0 1 0 2, 000 s3

0 1 0 0 0 0 1 350 s4

Here, rhs stands for right-hand side values, and the basis stands for the basic variables corre-
sponding to the rows. We use the convention that for the z-row, z is always in the basis and we
revert the sign of the objective coefficients (by moving all variables in z = 15x1 + 25x2 to the
left-hand side). In this initial setup, the basic feasible solution (bfs) consists of basic variables
BV0 = {s1, s2, s3, s4} with values s1 = 450, s2 = 300, s3 = 2, 000, s4 = 350, and nonbasic
variables NV0 = {x1, x2} with values all being 0.
Iteration 1. To increase the value of z, we can increase the value of a nonbasic variable, which
is called a pivot variable, and the corresponding column is called a pivot column in the
tableau. As our objective function is linear, it is reasonable to select a nonbasic variable with
the largest objective coefficient to be the pivot variable, which in this case is x2. As before, we
conduct a ratio test to detect the pivot row as follows.

↓
z x1 x2 s1 s2 s3 s4 rhs basis ratio
1 −15 −25 0 0 0 0 0 z
0 1 1 1 0 0 0 450 s1 450
0 0 1 0 1 0 0 300 s2 300 ←
0 4 5 0 0 1 0 2, 000 s3 400
0 1 0 0 0 0 1 350 s4 −

Now we can perform elementary row operations involving the pivot row with the goal of turn-
ing all pivot column entries in the non-pivot rows into 0 and the pivot row into 1. In our
example, we multiply the pivot row by 25, −1, and −5, add the results to rows 0, 1, and 3,
respectively.

z x1 x2 s1 s2 s3 s4 rhs basis
1 −15 0 0 25 0 0 7, 500 z
0 1 0 1 −1 0 0 150 s1

0 0 1 0 1 0 0 300 x2

0 4 0 0 −5 1 0 500 s3

0 1 0 0 0 0 1 350 s4

After the first iteration, the bfs consists of BV1 = {s1, x2, s3, s4} with values s1 = 150, x2 =
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300, s3 = 500, s4 = 350, with NV1 = {x1, s2} with values 0. The objective value z = 7, 500.
Iteration 2. Now the variable x1 has the largest coefficient in the objective, so we repeat the
ratio test and find the pivot row.

↓
z x1 x2 s1 s2 s3 s4 rhs basis ratio
1 −15 0 0 25 0 0 7, 500 z
0 1 0 1 −1 0 0 150 s1 150
0 0 1 0 1 0 0 300 x2 −
0 4 0 0 −5 1 0 500 s3 125 ←
0 1 0 0 0 0 1 350 s4 350

We perform the elementary row operations and get the updated tableau as follows.

z x1 x2 s1 s2 s3 s4 rhs basis
1 0 0 0 25/4 15/4 0 9, 375 z
0 0 0 1 1/4 −1/4 0 25 s1

0 0 1 0 1 0 0 300 x2

0 1 0 0 −5/4 1/4 0 125 x1

0 0 0 0 5/4 −1/4 1 225 s4

Now the bfs consists of BV2 = {s1, x2, x1, s4} with values s1 = 25, x2 = 300, x1 = 125,
s4 = 225, and NV2 = {s2, s3} with values 0. The objective value z = 9, 375. Note that
increasing the value of any nonbasic variable would now decrease the objective value, which
can be seen from the nonnegativity of the coefficients in the z-row of the tableau. We have thus
found an optimal solution to the LO problem. From Figure 1, we see that the above algorithmic
procedure corresponds to moving from point (0, 0) to (0, 300), and then to (125, 300) in the
(x1, x2)-plane.

Remark. In a simplex tableau (of a LO maximization problem), the basic feasible solu-
tion is optimal if all nonbasic variables have nonnegative coefficients in the z-row.

Recall that a LO problem can be unbounded. We would like to detect unbounded-
ness from the simplex tableau as described in the next example.
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x1

x2

450

400

300

0

x∗

125 350 450 500

↘
gradient

Figure 1: Feasible region and objective direction of Example 4

Example 5. Consider the following tableau in a LO maximization problem.

↓
z x1 x2 s1 s2 s3 s4 rhs basis
1 25 −4 0 0 0 0 90 z
0 14 −1 1 0 0 0 25 s1

0 1 0 0 1 0 0 30 s2

0 −5 −14 0 0 1 0 12 s3

0 4 −7 0 0 0 1 22 s4

We see that by increasing the value of the nonbasic variable x2, the objective value should
increase. However, there is no restriction on how much x2 can increase (as no ratio test needs
to be performed). This means that this LO problem is unbounded.

Remark. In a simplex tableau (of a LO maximization problem), the unboundedness is
detected if there is a column with no positive entries.

3 Simplex Method Termination and Initialization

A natural question is whether simplex method can always find an optimal solution in
finitely many steps/iterations. To answer this question, we need to note a special situa-
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tion called degeneracy, where there is one or more basic variables equal to 0. Degeneracy
(or degenerate bfs) may lead to the cycling phenomenon as in the next example.

Example 6. Consider the LO problem

max 5x1 + 4x2 − 20x3 − 2x4

s. t. 1
4 x1 − 1

8 x2 + 12x3 + 10x4 ≤ 0,

1
10 x1 + 1

20 x2 + 1
20 x3 + 1

5 x4 ≤ 0,
x1, x2, x3, x4 ≥ 0.

The initial (iteration 0) tableau can be written as follows.

z x1 x2 x3 x4 x5 x6 rhs basis
1 −5 −4 20 2 0 0 0 z

0 1
4 −1

8 12 10 1 0 0 x5

0 1
10

1
20

1
20

1
5 0 1 0 x6

We continue the simplex method.
• Iteration 1

z x1 x2 x3 x4 x5 x6 rhs basis

1 0 −13
2 260 202 20 0 0 z

0 1 −1
2 48 40 4 0 0 x1

0 0 1
10 −19

4 −19
5 −2

5 1 0 x6

• Iteration 2
z x1 x2 x3 x4 x5 x6 rhs basis

1 0 0 −195
4 −45 −6 65 0 z

0 1 0 97
4 21 2 5 0 x1

0 0 1 −95
2 −38 −4 10 0 x2

• Iteration 3
z x1 x2 x3 x4 x5 x6 rhs basis

1 195
97 0 0 −270

97 −192
97

7280
97 0 z

0 190
97 1 0 304

97 − 8
97

1920
97 0 x2

0 4
97 0 1 84

97
8

97
20
97 0 x3
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• Iteration 4
z x1 x2 x3 x4 x5 x6 rhs basis

1 15
4

135
152 0 0 −39

19
1760

19 0 z

0 −1
2 −

21
76 1 0 2

19 −100
19 0 x3

0 5
8

97
304 0 1 − 1

38
120
19 0 x4

• Iteration 5
z x1 x2 x3 x4 x5 x6 rhs basis

1 −6 −9
2

39
2 0 0 −10 0 z

0 1
2

1
4

1
4 1 0 5 0 x4

0 −19
4 −21

8
19
2 0 1 −50 0 x5

• Iteration 6
z x1 x2 x3 x4 x5 x6 rhs basis
1 −5 −4 20 2 0 0 0 z

0 1
4 −1

8 12 10 1 0 0 x5

0 1
10

1
20

1
20

1
5 0 1 0 x6

Note that in iteration 6, we get the same tableau as we got in iteration 0. Thus if we continue
with the execution of the simplex method, we will keep repeating the calculations in iterations
0-6 and will never be able to leave the same solution.

To avoid cycling in the simplex method, we can use certain pivoting rule, which
determines the pivoting variable at every degenerate solution. A conceptually useful
rule is called Bland’s rule: assuming that the variables are indexed, for example, by
1, . . . , n, we always choose the entering or leaving variable with the smallest index. We
illustrate Bland’s rule by applying it to Example 6.

Example 6 (continued). Applying Bland’s rule leads to the same first 5 iterations, at the end
of which we have the following tableau.

z x1 x2 x3 x4 x5 x6 rhs basis

1 −6 −9
2

39
2 0 0 −10 0 z

0 1
2

1
4

1
4 1 0 5 0 x4

0 −19
4 −21

8
19
2 0 1 −50 0 x5

Now the candidates for the entering variables are x1, x2, and x6, so by Bland’s rule we choose
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x1 to enter the basis.

z x1 x2 x3 x4 x5 x6 rhs basis

1 0 −3
2

45
2 12 0 50 0 z

0 1 1
2

1
2 2 0 10 0 x1

0 0 −1
4

95
8

19
2 1 −5

2 0 x5

After one more iteration, we see optimality from the tableau.

z x1 x2 x3 x4 x5 x6 rhs basis

1 3 0 24 18 0 80 0 z

0 2 1 1 4 0 20 0 x2

0 1
2 0 97

8
21
2 1 5

2 0 x5

In fact, the solution value is the same as the initial bfs, but the last tableau shows its optimality.

It can be shown that with Bland’s rule, simplex method does not have the cycling
phenomenon. The proof is a little involved, so we do not go into the details here. In
practice, Bland’s rule may not lead to efficient implementation of the simplex method.
Other pivoting rules may be more favorable, such as the steepest edge rule, the random
edge rule, or the lexicographic rule. The details can be found in [1].

Without cycling, the simplex method is guaranteed to terminate in finitely many
iteration (with either an optimal bfs or a certificate for unboundedness). In fact, given
a standard LO form with n variables and m constraints, there are at most (n

m) possible
simplex tableaus. This is because each tableau has a unique set of basic variables, the
cardinality (i.e., size) of which is exactly m. By definition, we will not see the same
basis twice unless cycling happens.

Theorem 1. If the simplex method does not have cycling, then it terminates with at most (n
m)

iterations.

Another issue is regarding how to find feasible solutions to the LO problem. We
have seen that if we start with a bfs, then the simplex method can keep feasibility
through the ratio tests. Therefore, it suffices for us to discuss initialization procedures
for feasible solutions. Here, we describe two methods: the two-phase simplex method
and the big-M simplex method.

The main idea of both methods is to “relax” the constraints by introducing artificial
variables, and then try to find solutions where the artificial variables are all zero. To be

11



Operations Research 1 (ISEN 320-501) Fall 2023

precise, for a standard form LO problem

max
n

∑
i=1

cixi

s. t.
n

∑
i=1

ajixi = bj, j = 1, . . . , m,

xi ≥ 0, i = 1, . . . , n,

(6)

we define the following index subsets of J := {1, . . . , m}: J+ := {j ∈ J : bj ≥ 0}, and
J− := {j ∈ J : bj < 0}, representing the constraints that have positive or no violations,
and those that have negative violations if we set x = 0. Then the two-phase method
first solves the first-phase feasibility problem

min ∑
j∈J

uj

s. t.
n

∑
i=1

ajixi + uj = bj, ∀ j ∈ J+,

n

∑
i=1

ajixi − uj = bj, ∀ j ∈ J−,

xi ≥ 0, i = 1, . . . , n,

uj ≥ 0, j = 1, . . . , m.

(7)

Clearly, if we set x = 0 and uj = |bj| for j = 1, . . . , m, then (x, u) is a bfs to the
problem (7). Moreover, the original problem (6) is feasible if and only if (7) has an
optimal basic solution (x′, u′) where u′1, . . . , u′m are all nonbasic variables. In this case,
the objective value of (7) will also be 0, meaning that we do not need these artificial
variables to make the original problem (6) feasible. Then we can use the solution x′ as
a bfs to (6). In practice, if an equality constraint j in (6) is converted from an inequality
constraint, then we can directly take the artificial variable uj to be the slack or excess
variable. We illustrate the two-phase simplex method by the following example.

Example 7. Consider the following LO problem:

max 5x1 + 10x2

s. t. 2x1 + x2 = 4
x1 + 2x2 ≤ 5

x1, x2 ≥ 0.

We can convert into the standard form (by introducing the slack variable s2 ≥ 0) and then
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construct the first-phase feasibility problem as

max − a1

s. t. 2x1 + x2 + a1 = 4
x1 + 2x2 + s2 = 5

x1, x2, s2, a1 ≥ 0.

We start with the bfs (x1, x2, s2, a1) = (0, 0, 5, 4) and use the simplex method as follows.
• Iteration 0 (raw)

z x1 x2 a1 s2 rhs basis

1 0 0 1 0 0 z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

As a basic variable, a1 should not have a nonzero coefficient in the z-row. We need to get
a correct tableau by a row operation.

• Iteration 0
z x1 x2 a1 s2 rhs basis

1 −2 −1 0 0 −4 z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

• Iteration 1
z x1 x2 a1 s2 rhs basis

1 0 0 1 0 0 z
0 1 1/2 1/2 0 2 x1

0 0 3/2 −1/2 1 3 s2

The tableau is optimal and we can check that (x1, x2, s2) = (2, 0, 3) is a bfs of the original
problem. Thus the first-phase feasibility problem is solved.

We start the second phase as follows.
• Iteration 0 (raw)

z x1 x2 s2 rhs basis

1 -5 −10 0 0 z
0 1 1/2 0 2 x1

0 0 3/2 1 3 s2

As x1 is a basic variable, its coefficient in the z-row must be zero. We can correct this
again by a row operation.
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• Iteration 0
z x1 x2 s2 rhs basis

1 0 −15/2 0 10 z
0 1 1/2 0 2 x1

0 0 3/2 1 3 s2

The entering variable is x2 and the ratio test determines that s2 should be leaving.
• Iteration 1

z x1 x2 s2 rhs basis

1 0 0 5 25 z
0 1 0 −1/3 1 x1

0 0 1 2/3 2 x2

The tableau is optimal. We have solved the second phase problem.
From the last tableau, we can see that an optimal solution is (x∗1 , x∗2) = (1, 2), with the optimal
value z∗ = 25.

The big-M method defines a big coefficient M ≫ 0 for the artificial variables in the
objective function. To be precise, for the problem (6), we pick a large constant M > 0
and solve the following problem

max
n

∑
i=1

cixi −M
m

∑
j=1

uj

s. t.
n

∑
i=1

ajixi + uj = bj, ∀ j ∈ J+,

n

∑
i=1

ajixi − uj = bj, ∀ j ∈ J−,

xi ≥ 0, i = 1, . . . , n,

uj ≥ 0, j = 1, . . . , m.

(8)

The subsets J+ and J− are defined similarly as in the two-phase method, so we can
choose the obvious bfs xi = 0 for i = 1, . . . , n and uj = |bj| for j = 1, . . . , m, as our
starting point. We say that M is sufficiently large, if in the simplex iterations, the sign
of any linear expression involving M would only depend on the coefficient of M. For
example, −M + 10 < 0 as M has a coefficient of −1, and 2M + 30 > M + 100 as the
coefficient of M on the left-hand side is 2, which is greater than 1, the coefficient of M
on the right-hand side. It can be shown that assuming M is sufficiently large,

• if the problem (8) has an optimal solution (x∗, u∗) with u∗ = 0, then x∗ is an
optimal solution to (6);

• if the problem (8) has an optimal solution (x∗, u∗) with u∗ ̸= 0, (6) is infeasible;

14



Operations Research 1 (ISEN 320-501) Fall 2023

• if the problem (8) is unbounded, then so is (6).
We illustrate below the big-M method on the same problem that appeared in Exam-
ple 7.

Example 8. For the problem

max 5x1 + 10x2

s. t. 2x1 + x2 = 4
x1 + 2x2 ≤ 5

x1, x2 ≥ 0,

the big-M formulation is

max 5x1 + 10x2 −Ma1

s. t. 2x1 + x2 + a1 = 4
x1 + 2x2 + s2 = 5

x1, x2, s2, a1 ≥ 0.

• Iteration 0 (raw)
z x1 x2 a1 s2 rhs basis

1 −5 −10 M 0 0 z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

We need to eliminate the coefficients of basic variables in the z-row through row opera-
tions.

• Iteration 0
z x1 x2 a1 s2 rhs basis

1 −5− 2M −10−M 0 0 −4M z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

Here, x1 should be the entering variable because −5− 2M < −10−M for sufficiently
large M. By the ratio test, a1 should be leaving.

• Iteration 1
z x1 x2 a1 s2 rhs basis

1 0 −15/2 5/2 + M 0 10 z
0 1 1/2 1/2 0 2 x1

0 0 3/2 −1/2 1 3 s2

Now x2 enters and s2 leaves the basis.
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• Iteration 2
z x1 x2 a1 s2 rhs basis

1 0 0 M 5 25 z
0 1 0 2/3 −1/3 1 x1

0 0 1 −1/3 2/3 2 x2

We terminate the simplex method as all coefficients in the z-row are nonnegative.
We have found an optimal solution (x∗1 , x∗2) = (1, 2). It is feasible to the original problem
because a∗1 = 0 is nonbasic. The optimal value is z∗ = 25.

4 Simplex Method in the Matrix Form

It may be conceptually simpler to consider the simplex method in the following matrix
form. The standard form can be written as

max cTx

s. t. Ax = b,

x ≥ 0.

(9)

By using the index sets B (for basic variables) and N (for nonbasic variables), we use
the subscript notation to indicate the data associated with these variables. For example,
if B = {1, 3, 4}, then cB = (c1, c3, c4) is a vector consisting of components of the vector
c with indices in B. Thus given B and N, the standard form can be rewritten as

max [cTB , cTN]

[
xB

xN

]

s. t. [AB, AN]

[
xB

xN

]
= b,[

xB

xN

]
≥ 0.

⇐⇒
max cTB xB + cTNxN

s. t. ABxB + ANxN = b,

xB ≥ 0, xN ≥ 0.

(10)

Then each iteration of the simplex method can be written in the matrix form:

z = cTB A−1
B b + rTxN

xB = p + QxN
(11)

where p = A−1
B b, Q = [qij] = −A−1

B AN, and the vector r := cN − (cTB A−1
B AN)

T is some-
times called the reduced cost. Recall that the definition of a basis requires the submatrix
AB to be nonsingular, which ensures that the inverse A−1

B is well-defined. Equivalently,
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we can write the tableau in each iteration as

z xB xN rhs
1 0 −r cTB A−1

B b
0 I −Q p

(12)

where I in the tableau is the m-by-m identity matrix.
The optimality criterion for the simplex method (for a LO maximization problem)

can be restated as r ≤ 0, and if any rk > 0, then xk should be the entering variable. The
leaving variable is determined by the ratio test, i.e., any xj such that

qjk < 0 and −
pj

qjk
= min

{
− pi

qik
: qik < 0, i = 1, . . . , m

}
. (13)

The unboundedness can be detected if for all i = 1, . . . , m, qik ≥ 0. Otherwise, we
set B ← B ∪ {j} \ {k} and continue. We use the data in Example 3 to illustrate the
procedure in the matrix form.

Example 9. We write the standard form of the LO problem

max 5x1 + 5x2 + 3x3

s. t. x1 + 3x2 + x3 ≤ 3,
−x1 + 3x3 ≤ 2,
2x1 − x2 + 2x3 ≤ 4,
2x1 + 3x2 − x3 ≤ 2,

x1, x2, x3 ≥ 0.

with slack variables x4, x5, x6, x7 ≥ 0 through the matrix and the vectors

A =


1 3 1 1 0 0 0
−1 0 3 0 1 0 0
2 −1 2 0 0 1 0
2 3 −1 0 0 0 1

 , b =


3
2
4
2

 , c =



5
5
3
0
0
0
0


.
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Initially, we set B← B0 = {4, 5, 6, 7} and N ← N0 = {1, 2, 3}, then we have

AB =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , AN =


1 3 1
−1 0 3
2 −1 2
2 3 −1

 , cB =


0
0
0
0

 , cN =

5
5
3

 .

In particular,

p = A−1
B b =


3
2
4
2

 , Q = −A−1
B AN =


−1 −3 −1
1 0 −3
−2 1 −2
−2 −3 1

 , r = cN− (cTB A−1
B AN)

T =

5
5
3

 .

Iteration 1. We pick x1 as an entering variable, and the ratio test determines that x7 is a
leaving variable, Thus B1 = B0 ∪ {1} \ {7} = {1, 4, 5, 6}, and consequently N1 = {2, 3, 7}.
Now setting B← B1 and N ← N1, we get

p = A−1
B b =


1
2
3
2

 , Q = −A−1
B AN =


−3

2
1
2 −1

2

−3
2 −

3
2

1
2

−3
2 −

5
2 −

1
2

4 −3 1

 , r = cN− (cTB A−1
B AN)

T =

−
5
2

11
2

−5
2

 .

Iteration 2. Now x3 is the new entering variable, and by the ratio test, x6 is leaving. Thus
B2 = B1 ∪ {3} \ {6} = {1, 3, 4, 5}, and consequently N2 = {2, 6, 7}. Now setting B ← B2

and N ← N2, we get

p = A−1
B b =


2
3
4
3

1
4
3

 , Q = −A−1
B AN =


4
3 −1

3
1
3

−5
6 −1

6 −
1
3

−7
2 +1

2 0
−29

6
5
6 −4

3

 , r = cN− (cTB A−1
B AN)

T =


29
6

−11
6

−2
3

 .

Iteration 3. The variable x2 is entering and by the ratio test x5 is leaving. Thus B3 = B2 ∪
{2} \ {5} = {1, 2, 3, 4}, and consequently N2 = {5, 6, 7}. Now setting B ← B3 and N ←
N3, we get

p = A−1
B b =


8

29
30
29
32
29
1

29

 , Q = −A−1
B AN =


− 6

29
5

29 − 8
29

− 8
29 −

3
29 −

1
29

5
29 − 9

29 −
3
29

21
29 − 3

29
28
29

 , r = cN− (cTB A−1
B AN)

T =

−1
−1
−2

 .

As r ≤ 0, we have found an optimal solution x∗ = (32/29, 8/29, 30/29, 0, 0, 0, 0) with the
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optimal value z∗ = 10.
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