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1 Graphs and Networks

A graph G = (N, E) consists of a set of nodes N and a set of edges E, which are repre-
sented by pairs of nodes. For example, N = {1, 2, . . . , n} and E = {(1, 2), (1, 3), . . . , (1, n)}.
We remark that there could be multiple edges represented by the same pair of nodes.
If there is at most one edge between a pair of nodes, then G is called a simple graph.

Example 1. Here is a graph with 5 nodes.

A B

CDE

The nodes are denoted by A, B, C, D, E, and the edges are represented by the unordered pairs
(A, B), (A, C), (A, D), (A, E), (B, C), (C, D), (D, E).

A graph is undirected if the edges have no “directions,” i.e., (i, j) is the same as (j, i)
for any i, j ∈ N. Otherwise the graph is directed and sometimes called a digraph. The
nodes and edges in directed graphs are often called vertices and arcs.

Example 2. Here is a directed graph with 5 vertices.

A B

CDE

The vertices are denoted by A, B, C, D, E, and the arcs are represented by the ordered pairs
(A, B), (A, C), (A, D), (A, E), (B, C), (C, D), (D, E).
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An undirected graph can be viewed as a directed graphs where we have arcs with
both directions for each edge.

We say that a node j ∈ N is adjacent to i ∈ N if (i, j) ∈ E. An edge (or arc) (i, j) ∈ E
is said to be incident to nodes i, j ∈ N. When the graph is directed, we also say that it
emanates from node i and terminates at node j; it is an outgoing arc of i and incoming arc
of j. The degree of a node is the number of its incident edges. The in-degree of a vertex
is the number of its incoming arcs, and the out-degree of a vertex is the number of its
outgoing arcs.

A walk is a sequence of alternating nodes and edges

i1, e1, i2, e2, . . . , ik−1, ek, ik,

where i1, . . . , ik ∈ N and ej = (ij, ij+1) ∈ E for j = 1, . . . , k− 1. It is called closed if i1 = ik.
We also denote a walk by i1, i2, . . . , ik or e1, . . . , ek. A trail is a walk where e1, . . . , ek are
distinct. A path is a walk where i1, . . . , ik are distinct. A path is always a trail, but the
converse is not necessarily true. These definitions apply to directed graphs as well.

A circuit is a closed trail. A cycle is a circuit i1, i2, . . . , ik, i1 where i1, . . . , ik are distinct.
A graph without any cycles is called acyclic. A graph is connected if for any pair of nodes,
there is a path connecting them. A connected, acyclic graph is called a tree.

Example 3. In the following graph,

1

2

3

4

5

6

1, 2, 1 is a walk but not a trail; 3, 2, 1, 6, 5, 4, 3, 6 is a trail but not a path; 1, 2, 3, 4, 5, 6, 1 is a
circuit and a cycle. The graph is connected but not a tree.

An Eulerian trail is a trail i1, e1, i2, . . . , ik−1, ek−1, ik such that each edge ej appears
only once in the trail for j = 1, . . . , k − 1. An Eulerian circuit is an Eulerian trail that is
also a circuit. Historically, one of the first graph theory problems studied was the Eule-
rian trail/circuit problem, motivated by the Königsberg seven bridge problem. It can
be formulated as the existence of an Eulerian trail/path in the following (nonsimple)
graph (Figure 1).

The seven bridge problem has a simple answer using the above definitions: a con-
nected undirected graph admits an Eulerian trail (resp. circuit) if at most two (resp.
none) of the nodes have odd degrees. This is because in an Eulerian trail, except for

2



Operations Research 1 (ISEN 320-501) Fall 2023

K L

N

S

Figure 1: Königsberg seven bridge problem

the starting and ending nodes, we must arrive at and leave from each node the same
amount of times, so the degree must be even. Conversely, if none of the nodes has an
odd degree, then each time we arrive at the node, there is an edge we can use to leave
from this node. The same argument applies to Eulerian trail by connecting the two
odd-degree nodes (if there are any). Therefore, we can say that the Eulerian trail/cir-
cuit problem is easy as we only need to count the degrees of the nodes.

The following vertex coloring problem can be much more challenging: given a graph
G = (V, E), we want to color the vertices (nodes) such that no adjacent vertices share
the same color. The minimum number of colors we need is called the chromatic number
of the graph. A heuristic method to find a vertex coloring is as follows.

(i) Start with a vertex and use color C = {1}.
(ii) Go to a vertex i ∈ N.

(a) If there is a color c ∈ C that is not used by any adjacent node j of i, color i
with c;

(b) otherwise add a new color to c′ to C and color i with c′.
(iii) Repeat Step 2 until all vertices are colored.

Example 4. The following example illustrates the heuristic way of coloring the vertices.
Step 1. Used color: red

A B

CDE

Step 2. Used colors: red, green
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A B

CDE

Step 3. Used color: red, green, yellow

A B

CDE

Step 4. We can color node B with the yellow color.

A B

CDE

Step 5. Used color: red, green, yellow, blue

A B

CDE

In this way, we can color the graph with 4 colors. However, depending on the ordering of the
colors, we may be able to use fewer colors. For example, in step 4, if we color node B with the
green color, then we would get the following.

Step 4. Used color: red, green, yellow

A B

CDE

Step 5. Used color: red, green, yellow

A B

CDE
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This means that we only need at most 3 colors for this graph.

The chromatic number for the graph in Example 4 is indeed 3. To see this, note that
the graph contains triangles, such as {A, D, E} and {A, B, C}. Each of these triangles
would require 3 different colors, as each vertex is adjacent to the other two. Therefore,
the graph would require at least 3 colors. This argument can be generalized by the
notion of cliques or complete subgraphs, meaning a subset of the vertices that are all
adjacent to each other.

We are fortunate in finding the chromatic number in Example 4 by the above heuris-
tic. In general, such heuristic can only be used for an upper bound on the chromatic
number, which may not equal the lower bound provided by cliques. Nevertheless, it
can be used to formulate the vertex coloring problem as a integer linear optimization as
follows. Suppose we need at most c colors, which can be found by the above heuristic.
For i ∈ N and k = 1, . . . , c, let

xik =

1, if the vertex i is colored by k,

0, otherwise,

and

yk =

1, if the color k is used,

0, otherwise.

The vertex coloring problem can be formulated as

min
c

∑
k=1

yk

s. t.
c

∑
k=1

xik = 1, i ∈ N,

xik + xjk ≤ 1, (i, j) ∈ E, k = 1, . . . , c,

xik ≤ yk, i ∈ N, k = 1, . . . , c,

xik, yk ∈ {0, 1}, i ∈ N, k = 1, . . . , c.

The first constraint ensures that we are coloring each vertex with exactly one color; the
second constraint ensures that adjacent vertices do not use the same color; the third
constraint checks if a color is used on any of the vertices. The objective function is the
number of colors used on the graph.
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2 Network Flow Problems

A directed graph G = (N, A) can be used to represent pipelines or transportation
networks. Each arc (i, j) ∈ A is associated with a flow variable xij. At each node i ∈ N,
we have the flow balance constraint

∑
j:(j,i)∈A

xji − ∑
j:(i,j)∈A

xij = fi,

where fi is the extraction/injection of the flow at node i ∈ N.

Example 5. A water pipeline is built to deliver water to residential locations in a village. The
water sources are listed below

source 1 2 3
capacity 100 100 80

and the residential demands are listed below.

residence 4 5 6 7 8
demand 50 60 40 30 70

Each pipeline has its unit cost of delivering water, due to geographical differences. Below is the
water network, where circle nodes are water sources and square nodes are residential locations.
The arrows indicate the directions and the numbers indicate the unit costs for the pipelines. The

1

5

8

4

6

3

2

7

5

3

4

2

3

5

6

3

3

4
3

5

7

goal is to find the minimum total water delivery cost while satisfying the residential demands.
Let cij denote the cost on the arc (i, j) ∈ A, di denote the supply/demand at the node i ∈ N.

We define variables

xij ≥ 0 : water flow in the directed pipeline (i, j) ∈ A,

and
yi ∈ R : water flowing out of the network at the node i ∈ N.
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Note that it is possible to have both xij and xji. If yi < 0, then it means water flows into the
network at the node i ∈ N. We have the water flow balance constraint

∑
j:(j,i)∈A

xji − ∑
j:(i,j)∈A

xij = yi, ∀ i ∈ N.

At water sources, we have
di ≤ yi ≤ 0, i = 1, 2, 3.

At residential locations, we have

yi ≥ di, i = 4, 5, . . . , 8.

Then objective function is
min ∑

(i,j)∈A
cijxij.

We code this LO model in model_water_network.py and get the following results.

The minimum cost is 1120.00.

The flow in each pipeline is shown below.

x(1, 4) = 10.000000000000004

x(1, 5) = 60.0

x(5, 6) = 0.0

x(8, 5) = 0.0

x(5, 8) = 0.0

x(8, 6) = 0.0

x(3, 8) = 70.0

x(3, 6) = 9.999999999999991

x(3, 7) = 0.0

x(6, 4) = 0.0

x(4, 6) = 0.0

x(2, 4) = 40.0

x(2, 6) = 30.000000000000007

x(2, 7) = 30.0

x(6, 7) = 0.0

If we have limits on the flows, then it may not be possible to transport any amount
from the source to the target (or sink). We only inject flow at the source s ∈ N and
extract flow at the sink t ∈ N and solve the above network flow problem. To simply
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the notation, we can create an artificial arc (t, s) and

max xts

s. t. ∑
j:(j,i)∈A′

xji − ∑
j:(i,j)∈A′

xij = 0, ∀ i ∈ N,

0 ≤ xij ≤ uij, ∀ (i, j) ∈ A,

(1)

where A′ = A ∪ {(t, s)} and uij is the given limit for arc (i, j) ∈ A. The dual problem

min ∑
(i,j)∈A

uijyij

s. t. zt − zs ≥ 1,

zi − zj + yij ≥ 0, ∀ (i, j) ∈ A,

yij ≥ 0, ∀ (i, j) ∈ A,

(2)

has a nice interpretation, known as the minimum cut problem. Given a graph G =

(N, A), an s-t cut is a partition of N = S ∪ T, S ∩ T = ∅, such that s ∈ S and t ∈ T.
Given the capacity of each arc uij, the capacity of the cut S, T is the sum

∑
i∈S,j∈T,(i,j)∈A

uij.

To find a cut with minimum capacity, we can formulate it as an integer linear optimiza-
tion. For each i ∈ N, let

zi =

1 if i ∈ T,

0 if i ∈ S,

and for each (i, j) ∈ A, let

yij =

1 if i ∈ S and j ∈ T,

0 otherwise.

Clearly we must have constraints

yij ≥ zj − zi, ∀ (i, j) ∈ A.

Since we are looking for an s-t cut, we should have

zt = 1, zs = 0 ⇐⇒ zt − zs = 1.

8



Operations Research 1 (ISEN 320-501) Fall 2023

The objective is to minimize the sum

min ∑
(i,j)∈A

uijyij.

To summarize, the minimum cut problem can be written as

min ∑
(i,j)∈A

uijyij

s. t. yij ≥ zj − zi, ∀ (i, j) ∈ A,

zt − zs = 1,

yij ∈ {0, 1}, ∀ (i, j) ∈ A,

zi ∈ {0, 1}, ∀ i ∈ N.

(3)

In fact, it can be proved that the MILO problem (3) is equivalent to the LO problem (2).
The main idea is that all of the minors of the constraint coefficient matrix in (2) is ±1
and therefore the simplex tableau will only consist of coefficients ±1. Hence, the basic
variable values will be either 0 or 1, as the right-hand side constants.

Theorem 1. For any network G = (N, A), the maximum flow in (1) equals the minimum
cut (3).

The theorem is connected to the Ford-Fulkerson algorithm, that directly calculates
the maximum flow by iterative improvement on the current flows until reaching the
capacities in some arcs. To be precise, we introduce two basic operations in the algo-
rithm.

• Labeling path:
– Label the source.
– Given a labeled node i, label the node j if either

* the arc (i, j) is a forward arc: 0 ≤ xij < uij; or

* the arc (j, i) is a backward arc: 0 < xij ≤ uij.
– Repeat the previous step until reaching the sink or no more nodes can be

labeled.
• Augmenting flow:

– Decrease the flow that would be feasible for all backward arcs:

∆b := min{xij : (i, j) is a backward arc}.

– Increase the flow that would be feasible for all forward arcs:

∆f := min{uij − xij : (i, j) is a forward arc}.
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– Let ∆ := min{∆b, ∆f}. We can then improve the current solution by sending
∆ units of flow from source to sink via the augmenting path:

* increase the flow for all forward arcs in the path by ∆, and

* decrease the flow for all backward arcs in the path by ∆.

Example 6. We want to find the maximum flow from A to F, where the capacities are labeled
on the arcs.

A

B

C

D

E

F

1

4

1

3

2

4

3

2

2

The iterations of Ford-Fulkerson algorithm are executed as follows.
Iteration 1: Labeling path A,B,C,E,D,F

A

B

C

D

E

F

0/1

0/4

0/1

0/3

0/2

0/4

0/3

0/2

0/2

Augmenting flow ∆ = min{1, 1, 3, 3, 2} = 1
Iteration 2: Labeling path A,C,B,D,F

A

B

C

D

E

F

1/1

0/4

1/1

1/3

0/2

0/4

1/3

0/2

1/2

Augmenting flow ∆ = min{4, 1, 4, 1} = 1
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Iteration 3: Labeling path A,C,E,F

A

B

C

D

E

F

1/1

1/4

0/1

1/3

0/2

1/4

1/3

0/2

2/2

Augmenting flow ∆ = min{3, 2, 2} = 2
Iteration 4: Labeling path A,C, and no more nodes can be labeled

A

B

C

D

E

F

1/1

3/4

0/1

3/3

0/2

1/4

1/3

2/2

2/2

Terminate the algorithm. The maximum flow from A to F is 4.

To see the connection to the minimum cut problem, we construct the cut S, T when
the algorithm terminates. Let S be all the nodes that is still connected to the source
with the remaining capacities. Clearly, S does not contain the sink. All arcs from S to T
contain all the flows from the source to the sink, the sum of which equal to the capacity
of this cut. Thus by LO duality, we know that S, T is a minimum cut.

3 Shortest Path Problem

Given a directed graph G = (N, A) with each arc (i, j) associated with some costs cij,
we want to find a path from a node s ∈ N to a node t ∈ N with the minimum total cost.
Here we use the term “cost” instead of just distance because the shortest path problem
can be used for modeling some general decision problems.

Example 7. Suppose we have purchases a new machine for $24,000 at time 0. The cost of
maintaining the machine during a year and its trade-in price are given in the table below.
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Age Annual Maintenance Cost ($) Age Trade-in Price ($)
0 4,000 1 14,000
1 8,000 2 12,000
2 10,000 3 4,000
3 18,000 4 2,000
4 24,000 5 0

Assume that at any time it costs $24,000 to purchase a new machine. Our goal is to minimize
the net cost incurred during the next five years. We can model this problem using a graph.

• Our network will have six nodes corresponding to the beginning of years 1-6.
• Node i is the beginning of year i and for i < j, an arc (i, j) corresponds to purchasing a

new machine at the beginning of year i and keeping it until the beginning of year j.
• The cost on the arc (i, j) is the total net cost incurred from years i to j:

cij = maintenance cost incurred during years i, i + 1, . . . , j − 1

+ cost of purchasing a machine at the beginning of year i

− trade-in value received at the beginning of year j.

For example, (in $1,000)
c12 = 4 + 24 − 14 = 14,

and
c26 = 4 + 8 + 10 + 18 + 24 − 2 = 62.

The network is then plotted as follows.

1 2 3 4 5 6
14 14 14 14 14

24 24 24 24

42 42 42

62 62

88

Then the maintenance problem reduces to finding a shortest/cheapest path from node 1 to node
6.

Any shortest path problem can be formulated as a MILO model. Define for each
(i, j) ∈ A,

xij =

1 if the arc (i, j) is selected in the path,

0 otherwise,
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and for each i ∈ N \ {s, t}

yi =

1 if the node (i, j) is visited in the path,

0 otherwise.

There is one outgoing arc for the starting node

∑
j:(s,j)∈A

xsj = 1,

one incoming arc for the terminating node

∑
j:(j,t)∈A

xjt = 1,

and one incoming arc and one outgoing arc for each visited node

∑
j:(j,i)∈A

xji = yi,

∑
j:(i,j)∈A

xij = yi.

The objective is to minimize the total cost

min ∑
(i,j)∈A

cijxij.

Alternatively, we can also solve the shortest path problem efficiently through spe-
cialized algorithms.

3.1 Dijkstra’s Algorithm

The algorithm can be described as follows.
(i) Mark s as solved with cost 0, and all other nodes as unsolved.

(ii) For any node adjacent to the last solved node, calculate the sum of the edge cost
and the minimum cost of the last solved node, and

• if it is not a candidate, set it to be a candidate with tentative cost being the
sum;

• otherwise, if the sum is smaller than the incumbent tentative cost, update
the tentative cost and predecessor to be the sum and the last solved node.

(iii) Pick a candidate node with the smallest tentative cost and mark it as solved.
• If the destination is solved or if there is no more candidate node, terminate

the algorithm.
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• Otherwise, go back to Step 2.

Example 8. We want to find a shortest path from node O to node T. The cost of each edge is
marked on the graph.

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

The iterations are illustrated as follows.
Iteration 1: solved nodes (with min. cost, predecessor)

– O, (0, N/A)

candidate nodes (with tentative cost, predecessor)
– A (2, O)
– B (5, O)
– C (4, O)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 2: solved nodes
– O (0, N/A)
– A (2, O)

candidate nodes
– B (5, O) → (4, A)
– C (4, O)
– D (9, A)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7
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Iteration 3: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)

candidate nodes
– C (4, O)
– D (9, A) → (8, B)
– E (7, B)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 4: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)

candidate nodes
– D (8, B)
– E (7, B)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 5: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)
– E (7, B)

candidate nodes
– D (8, B)
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– T (14, E)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 6: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)
– E (7, B)
– D (8, B)

candidate nodes
– T (14, E) → (13, D)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 7: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)
– E (7, B)
– D (8, B)
– T (13, D)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7
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Terminate the algorithm as the target node is solved.

We remark that when there is negative cost on the edges/arcs, Dijkstra’s algorithm
may terminate prematurely and fail to give the correct answer. Thus we need another
algorithm to handle the more general case.

3.2 Bellman-Ford Algorithm

The algorithm can be described as follows.
(i) Mark the cost of s as 0, and those of other nodes as +∞.

(ii) Repeat the following step for |V| − 1 times.
• For each (i, j) ∈ A, if the current total cost of j is greater than the sum of the

current total cost of i plus the cost on the arc (i, j),
– update the cost of j to be the sum and set its predecessor to be i.

The cost we calculate in each step k is the minimum cost of node of a path from s to i
connected with at most k arcs.

Example 9. We want to find a cheapest path from node A to node D in the following directed
graph.

A B

C D

-2

7
6

5

-3

Iteration 0:

Node Cost Predecessor
A 0 N/A
B +∞ N/A
C +∞ N/A
D +∞ N/A

Iteration 1:

Node Cost Predecessor
A 0 N/A
B −2 A
C 7 A
D +∞ N/A

Iteration 2:

17
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Node Cost Predecessor
A 0 N/A
B −2 A
C 4 B
D 3 B

Iteration 3:
Node Cost Predecessor

A 0 N/A
B −2 A
C 4 B
D 1 C

We see that the minimum cost from A to D is 1, and the path is A, B, C, D. Note that the
Dijkstra’s algorithm, if applied in this case, would falsely terminate at the second iteration with
a total cost 3.

In general, the Bellman-Ford algorithm can be applied to any (directed) graph with-
out a negative-cost cycle. We see below an alternative explanation why we need to
execute the calculation step for |V| − 1 times.

4 Dynamic Programming

The shortest path problem can be reformulated on a directed acyclic graph (DAG). Let
G̃ = (Ṽ, Ã) such that

• Ṽ consists of vk for each v ∈ V and k = 1, . . . , K := |V|;
• the arcs Ã consists of

– (vk−1, vk) with cost 0 for each v ∈ V and k = 2, . . . , K,
– and (vk−1, uk) with the cost cuv for each (u, v) ∈ A and k = 2, . . . , K.

For example, for Example 9, the DAG can be plotted as follows.

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

-2

7

6

5

-3

18
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We now want to find a path with minimum cost from s1 to tK in G̃. To do this, notice
that the vertices are now grouped into stages k = 1, . . . , K, such that arcs emanating
from stage k vertices terminate in stage k + 1. For each vertex vk in stage k = 2, . . . , K,
we can write

c(vk) = min{cuv + c(uk−1) : u ∈ V}.

This is known as the Bellman equation of dynamic programming and corresponds to ex-
actly what we did in the Bellman-Ford algorithm.

Dynamic programming (DP) is a very useful algorithmic framework for many op-
timization problems, where

• the decisions are made in different stages t = 1, . . . , T;
• in each stage there are multiple states v ∈ Vt that contain all information impact-

ing our decision in that stage;
• once a decision is made, the transition into the next stage is known (u, v) ∈ At;
• the cumulative cost ft starting from stage t can be described by recursions

ft(u) = min
v∈Vt+1

{cuv + ft+1(v)}.

The Bellman equation allows us to solve many discrete optimization problems recur-
sively.

Example 10. A company knows that the demand for its product during each of the next four
months will be as follows:

Month Demand
1 1
2 3
3 2
4 4

At the beginning of each month, the company must determine how many units should be pro-
duced during the current month. During a month in which any units are produced, a setup
cost of $3 is incurred. In addition, there is a variable cost of $1 for every unit produced. At the
end of each month, a holding cost of $0.5 per unit on hand is incurred. Capacity limitations
allow a maximum of 5 units to be produced during each month. The size of the companys ware-
house restricts the ending inventory for each month to 4 units at most. The company wants to
determine a production schedule that will meet all demands on time and will minimize the sum
of production and holding costs during the four months. Assume that 0 units are on hand at
the beginning of the first month.

Here, we can index the stages by 1, 2, 3, 4 (one for each month), and the state by 0, 1, 2, 3,
4, which represents the inventory at the end of the month. The transition is given by the fact
that the inventory at the end of month t equals the inventory at the end of month t − 1 plus
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the production in month t minus the demand in month t. We may use a DAG to represent the
problem, where every vertex is denoted by a stage-state pair, and an additional vertex (0, 0) is
added to denote the initial inventory at hand.

0, 0

1, 0

1, 1

1, 2

1, 3

1, 4

2, 0

2, 1

2, 2

2, 3

2, 4

3, 0

3, 1

3, 2

3, 3

3, 4

4, 0

4, 1

4, 2

4, 3

4, 4

To solve the problem through DP recursion (Bellman equation), note that

f (4, 0) = · · · = f (4, 4) = 0,

and
f (3, 1) = min

p=3,4,5
{ f (4, 1 + p − 4) + 3 · 1(p > 0) + p + 0.5},

because the demand in month 4 is 4. Similarly, this gives us

f (3, 0) = min{3 + 4, 3 + 5} = 7, with p = 4,

f (3, 1) = min{3 + 3 + 0.5, 3 + 4 + 0.5, 3 + 5 + 0.5} = 6.5, with p = 3,

f (3, 2) = min{3 + 2 + 1, . . . , 3 + 5 + 1} = 6, with p = 2,

f (3, 3) = min{3 + 1 + 1.5, . . . , 3 + 5 + 1.5} = 5.5, with p = 1,

f (3, 4) = min{2, 3 + 1 + 2, . . . , 3 + 4 + 2} = 2, with p = 0.

We can now calculate f (2, i) for i = 0, 1, . . . , 4 by

f (2, i) = min
p≤5

{ f (3, i + p − 2) + 3 · 1(p > 0) + p + 0.5i : 0 ≤ i + p − 2 ≤ 4}.
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Plugging in the values, we get

f (2, 0) = min{7 + 3 + 2, 6.5 + 3 + 3, . . . , 5.5 + 3 + 5} = 12, with p = 2,

f (2, 1) = min{7 + 3 + 1 + 0.5, . . . , 5.5 + 3 + 4 + 0.5, 2 + 3 + 5 + 0.5} = 10.5, with p = 5,

f (2, 2) = min{7 + 1, . . . , 5.5 + 3 + 3 + 1, 2 + 3 + 4 + 1} = 8, with p = 0,

f (2, 3) = min{6.5 + 1.5, 6 + 3 + 1 + 1.5, . . . , 2 + 3 + 3 + 1.5} = 8, with p = 0,

f (2, 4) = min{6 + 2, 5.5 + 3 + 1 + 2, 2 + 3 + 2 + 2} = 8, with p = 0.

Then, we can now calculate f (1, i) for i = 0, 1, . . . , 4 by

f (1, i) = min
p≤5

{ f (2, i + p − 3) + 3 · 1(p > 0) + p + 0.5i : 0 ≤ i + p − 3 ≤ 4}.

Plugging in the values, we get

f (1, 0) = min{18, 17.5, 16} = 16, with p = 5,

f (1, 1) = min{17.5, 17, 15.5, 16.5} = 16.5, with p = 4,

f (1, 2) = min{17, 16.5, 15, 16, 17} = 15, with p = 3,

f (1, 3) = min{13.5, 16, 14.5, 15.5, 16.5} = 13.5, with p = 0,

f (1, 4) = min{12.5, 14, 15, 16} = 12.5, with p = 0,

We can finally calculate f (0, 0) by

f (0, 0) = min
p≤5

{ f (1, p − 1) + 3 · 1(p > 0) + p : 0 ≤ p − 1 ≤ 4}.

This gives us

f (0, 0) = min{20, 21.5, 21, 20.5, 20.5} = 20, with p = 1.

Retrieving the solutions, we should produce 1 unit in month 1, 5 units in month 2, 0 units in
month 3, and 4 units in month 4. The total cost is $20.

Sometimes DP can be applied to problems that do not have a clear stage structure.
We illustrate this by the following example of a knapsack problem that has been intro-
duced in MILO model and the cutting stock problem in the column generation step.

Example 11. Suppose we would like to fill a knapsack with capacity of 10 kilograms. The items
of each type are listed below with their values.
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Type Weight (kg) Value ($)
1 4 11
2 3 7
3 5 12

The goal is to maximize the total value of the items in the knapsack.
Here, we can set the stages to be t = 1, 2, 3, representing the items of types t, t + 1, . . . , 3 to

be filled. Then the state in each stage is denoted by x, the remaining capacity in the knapsack.
Since we are maximizing the total value, we define our value function in stage t as ft(x), which
is the maximum value that can be filled in the knapsack with items t, t + 1, . . . , 3. We have the
recursion

ft(x) = max
y

{vt · y + ft+1(x − wt · y) : x − wt · y ≥ 0},

where vt, wt are the value and the weight of item t.
In stage 3, clearly we have

f3(10) = 24, with y∗3 = 2,

f3(x) = 12, for 5 ≤ x ≤ 9, with y∗3 = 1,

f3(x) = 0, for 0 ≤ x ≤ 4, with y∗3 = 0.

In stage 2, f2(x) = max{7y + f3(x − 3y) : x − 3y ≥ 0}, which gives us

f2(10) = max{24, 19, 14, 21} = 24, with y∗2 = 0,

f2(9) = max{12, 19, 14, 21} = 21, with y∗2 = 3,

f2(8) = max{12, 19, 14} = 19, with y∗2 = 1,

f2(7) = max{12, 7, 14} = 14, with y∗2 = 2,

f2(6) = max{12, 7, 14} = 14, with y∗2 = 2,

f2(5) = max{12, 7} = 12, with y∗2 = 0,

f2(4) = max{0, 7} = 7, with y∗2 = 1,

f2(3) = max{0, 7} = 7, with y∗2 = 1,

f2(x) = 0, for x = 2, 1, 0, with y∗2 = 0.

Finally for stage 1, we only need to calculate

f1(10) = max{24, 25, 22} = 25, with y∗1 = 1.

The optimal knapsack consists of 1 type 1 item and then 2 type 2 items, with the total value
being 25.
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