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A mathematical optimization problem has either of the following forms:

min f (x)

s. t. x ∈ X
or

max f (x)

s. t. x ∈ X.
(1)

Here, X is a set of variables x, while f is a function defined on X such that we can
compare its values (partially ordered). Let R denote the real numbers. In this course,
and in many real-world problems, the set X is a subset of some n-dimensional real
vector space X ⊆ Rn and f : Rn → R takes value in real numbers. We call the set X
the feasible region of the problem, the variables x the decision variables, and the function
f the objective function. Any x ∈ Rn is feasible if x ∈ X and infeasible otherwise. When
X = ∅, we say that the problem is infeasible.

The minimum or maximum value of the objective function is called the optimal
value of the optimization problem, if it exists (Example 1). Certain values of the de-
cision variables x∗ ∈ Rn are called an optimal solution if f (x∗) = minx∈X f (x) or
f (x∗) = maxx∈X f (x), and denoted as x∗ ∈ arg minx∈X f (x) or x∗ ∈ arg maxx∈X f (x).
Despite some notational difference, we do not really need to develop different theories
for the two forms because we can transform maxx∈X f (x) into minx∈X − f (x), where
only the sign of the optimal value is changed and the set of optimal solutions remains
unchanged. For now, we only discuss minimization problems for notational conve-
nience.

An optimization problem does not necessarily have any optimal value or optimal
solutions. When it does, it may not have a unique optimal solution. Thus to be rig-
orous, one would only say “the” optimal solution when it exists and is known to be
unique.

Example 1. • Let X = R and f (x) = x. For any x ∈ R, there is a real number a < x.
Therefore, f does not have a minimum on X. This also implies that the optimization
problems minx∈X f (x) do not have optimal solutions.

• Let X = {x ∈ R : 0 < x < 1} ⊆ R and f (x) = x. For any x ∈ X, notice that
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a := x/2 ∈ X. Clearly f (a) < f (x) so f does not have a minimum on X. This also
implies that the optimization problems minx∈X f (x) do not have optimal solutions.

• Let X = {x ∈ R : x ≥ 1} ⊆ R and f (x) = 1/x. Notice that f (x) > 0 for any x ∈ X,
and for any a > 0, we can find x = 1 + 1/a ∈ X such that

f (x) =
1
x
=

a
a + 1

< a.

In plain words, no matter how small a positive number a is, we can always find a decision
variable x such that f (x) < a. Therefore, the optimization problem minx∈X f (x) does
not have optimal solutions.

• Let X = R and f (x) = 0 (i.e., a constant function). Any number x ∈ R is an optimal
solution to both the minimization problem, and therefore, the optimization problem does
not have a unique solution.

We say a minimization problem is bounded if we can find a real number a ∈ R

such that f (x) > a for all feasible decision variables x ∈ X, and unbounded other-
wise. When the optimal value is not guaranteed to exist, some people write inf instead
of min to denote the largest such lower bound, and use the convention that the op-
timal value of an unbounded minimization problem is −∞. Similarly, the smallest
upper bound of a maximization problem is sometimes denoted as sup and the optimal
value of an unbounded maximization problem is +∞. With this convention, an infea-
sible minimization (resp. maximization) problem has its optimal value +∞ (resp. −∞).
Please note that the infinity notation is not a real number and should be treated with
care. Whenever a problem is unbounded or infeasible, there is no optimal solution,
arg minx∈X f (x) = ∅.

When the optimization problem is bounded, the feasible region is closed, and the
objective function is continuous, then the existence of the optimal value and optimal
solutions is guaranteed. We do not define continuous functions in this class, but the
common elementary functions (e.g. linear, polynomial, rational power, exponential,
trigonometric, and their sums, products, inverses, compositions) are all continuous
functions inside their domains. Using these functions in nonstrict inequalities would
automatically define a closed feasible region. Requiring some of the variables to be
integers also leads to a closed feasible region.

In this course, we will mostly consider the case where the feasible region X consists
of discrete or continuous values, and is defined functionally by a finite number of
equalities and inequalities. That is, given an index n′ ≤ n and functions g1, . . . , gm :
Rn → R,

X := {x ∈ Zn′ × Rn−n′
: gi(x) ≤ 0, i = 1, . . . , m′, gj(x) = 0, j = m′ + 1, . . . , m}. (2)

2



Operations Research 1 (ISEN 320-501) Fall 2023

Each of the equalities or inequalities is called a (functional) constraint on our decision
variables x. We are using the convention gi(x) ≤ 0 for i = 1, . . . , m′ because any
inequality g′(x) ≥ 0 can be equivalently rewritten as −g′(x) ≤ 0, and only considering
nonstrict inequalities out of the concern of optimal solution existence, as discussed
above. The optimization problem (1) with a feasible region (2) can be more directly
written as

min f (x)

s. t. gi(x) ≤ 0, i = 1, . . . , m′,

gj(x) = 0, j = m′ + 1, . . . , m,

x ∈ Zn′ × Rn−n′

(3)

without the need to explicitly specify the set X. With any functional constraint (3),
i.e., m > 0, the problem is called constrained optimization, and unconstrained otherwise.
We say that the problem (3) is linear if f , g1, . . . , gm are all affine linear functions, and
nonlinear otherwise. When all of the variables must take integer values, i.e., n′ = n, we
say that the problem (3) is discrete or integer optimization; if all of the variables can take
continuous values, i.e., n′ = 0, then the problem is often called continuous optimization;
and in the case 0 < n′ < n we say that the problem is mixed-integer optimization.

For constrained optimization modeling, we can follow the procedure below.
(i) Describe the relevant data of the problem.

(ii) Identify and describe the decision variables.
(iii) Describe the sign, bounds, and type restrictions on individual variables.
(iv) Write the constraints in terms of the decision variables.

• If any additional variable is needed, go back to Step (ii).
(v) Write the objective function in terms of the decision variables.

• If any additional variable is needed, go back to Step (ii).

Example 2. One wants to design a aluminum can in the shape of a cylinder with height h and
radius r with the minimum usage of aluminum (Figure 1), such that the following requirements
are satisfied.

• The height h must be at least three times as large as the radius r.
• The height h can be at most four times as large as the radius r.
• The volume needs to be at least V.

To formulate an optimization problem, let (r, h) ∈ R2 be our decision variables. Assuming
the aluminum sheet has a fixed thickness, the amount of aluminum used is determined by
the surface area f (r, h) = 2πr + 2πrh, which will be our objective function. For the first
requirement, we can write it as a constraint

h ≥ 3r ⇐⇒ −h + 3r ≤ 0.
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h

2r Volume:
πr2h

Surface area:
2πr2 + 2πrh

Figure 1: A cylindrical can of height h and radius r

Similarly, for the second requirement, we can write it as

h ≤ 4r ⇐⇒ h − 4r ≤ 0.

The volume of this cylindrical can is πr2h, so with the given parameter V, the last requirement
can be written as

V ≤ πr2h ⇐⇒ V − πr2h ≤ 0.

While the variables r and h must of course be nonnegative, we do not need to add bounds r ≥ 0
and h ≥ 0 because the first two constraints imply that 4r ≥ h ≥ 3r, which guarantees r ≥ 0
and hence also h ≥ 3r ≥ 0. To summarize, we have formulated the following optimization
problem.

min 2πr2 + 2πrh

s. t. − h + 3r ≤ 0,

h − 4r ≤ 0,

V − πr2h ≤ 0,

r, h ∈ R.

This is an example of continuous and nonlinear optimization problem.
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