
Integer and Mixed-integer Linear Optimization
Models

Shixuan Zhang

ISEN 320-501, Fall 2023

1 Mixed-integer Linear Optimization and Computer Tools

Given problem data c = (c1, . . . , cn) ∈ Rn, b = (b1, . . . , bm) ∈ Rm, and

A =

a11 · · · a1n
...

am1 · · · amn

 ∈ Rm×n,

a (mixed-)integer linear optimization (MILO) model can be defined as

min / max cTx

s. t. Ax ≤ b,

x ∈ Rn1 ×Zn2 ,

(1)

where n1 + n2 = n. If n = n1 and n2 = 0, then the problem (1) reduces to the usual
linear optimization (LO) model. If n2 = n, then we say it is a (pure) integer linear
optimization, and otherwise a mixed-integer linear optimization when n2 < n. While
integer and mixed-integer linear optimization models may have different algorithmic
aspects, we do not distinguish them in this course because we focus mainly on the
modeling part. We see a simple example of a MILO model as follows.

Example 1. A company produces two types of baby carriers, non-reversible and reversible.
• Each non-reversible carrier sells for $22, requires 2 linear yards of a solid color fabric,

and costs $7 to manufacture.
• Each reversible carrier sells for $35, requires 2 linear yards of a printed fabric as well as

2 linear yards of a solid color fabric, and costs $10 to manufacture.
The company has 900 linear yards of solid color fabrics and 600 linear yards of printed fabrics
available for its new carrier collection. It can spend up to $4,000 on manufacturing the carriers.
The demand is such that all reversible carriers made are projected to sell, whereas at most 350

1

Operations Research 1 (ISEN 320-501) Fall 2023

non-reversible carriers can be sold. The goal of the company is to maximize its profit (e.g., the
difference of revenues and expenses) resulting from manufacturing and selling the new carrier
collection.

We define x1, x2 ≥ 0 to be the numbers of non-reversible and reversible carriers to manu-
facture. If we do not require x1, x2 to take integer values, then we have a LO model as

max 15x1 + 25x2 (profit)
s. t. x1 + x2 ≤ 450 (solid color fabric constraint)

x2 ≤ 300 (printed fabric constraint)
7x1 + 10x2 ≤ 4, 000 (budget constraint)

x1 ≤ 350 (demand constraint)
x1, x2 ≥ 0. (nonnegativity constraints).

We can use OR-Tools and GLOP to find the solution, as coded in lin_model_production.py,
and get the following result.

The maximum profit for the baby carrier production is 9642.9.

x1 = 142.86 (non-reversible carriers)

x2 = 300.00 (reversible carriers)

We can see that the solution is not integral. In fact, since the objective function consists of inte-
ger coefficients and the optimal value here is non-integer, there does not exist an integer solution.
This example suggests that it is not always practical to relax the integrality requirements and
solve the LO model as an substitute.

We can still use the Python module OR-Tools for MILO modeling. As usual, we
import it using the following command.

from ortools.linear_solver import pywraplp

Next we declare a MILO solver SCIP instead of the LO solver GLOP that we used for LO
models.

solver = pywraplp.Solver.CreateSolver("SCIP")

For Example 1, we can define our integer variables using the IntVar functions, the
argument for which is the same as the function NumVar for continuous variables.

x1 = solver.IntVar(0.0, solver.infinity(), ’x1’)

x2 = solver.IntVar(0.0, solver.infinity(), ’x2’)

To be more specific, the first argument specifies the lower bound, the second one spec-
ifies the upper bound (where solver.infinity() gives ∞), and the last one gives the
variable a name used in model printing or exporting. After adding the variables, each
linear constraint can be added similar to what we did for LO models.

2

Operations Research 1 (ISEN 320-501) Fall 2023

define the solid color fabric constraint

solver.Add(x1 + x2 <= 450)

define the printed fabric constraint

solver.Add(x2 <= 300)

define the budget constraint

solver.Add(7*x1 + 10*x2 <= 4000)

define the demand constraint

solver.Add(x1 <= 350)

We set linear objective function.

create the objective of maximizing the profit

solver.Maximize(15*x1 + 25*x2)

And now we may invoke the solver.

call the solver

status = solver.Solve()

The result (from the script int_model_production.py) is printed below.

The maximum profit for the baby carrier production is 9635.0.

x1 = 144.00 (non-reversible carriers)

x2 = 299.00 (reversible carriers)

By comparing the MILO and LO solutions in Example 1, we see that the MILO solu-
tion is not just a rounded solution of the LO model. The following example further
illustrates that a rounded solution may not be feasible to the MILO problem.

Example 2. A hospital uses a 12-hour shift schedule for its nurses, with each nurse working
either day shifts (7:00 am-7:00 pm) or night shifts (7:00 pm-7:00 am). Each nurse works 3

Table 1: Number of Required Nurses for Day Shifts

Day of week/shift Nurses required

Monday (Mo) 16
Tuesday (Tu) 12
Wednesday (We) 18
Thursday (Th) 13
Friday (Fr) 15
Saturday (Sa) 9
Sunday (Su) 8

consecutive day shifts or 3 consecutive night shifts and then has 4 days off. The minimum

3

Operations Research 1 (ISEN 320-501) Fall 2023

number of nurses required for each day shift during a week is given in the following table: In
addition, it is required that at least two thirds of the day-shift nurses have weekends (Saturday
and Sunday) off. The hospital is aiming to design a schedule for day-shift nurses that minimizes
the total number of nurses employed.

To formulate a MILO model for the hospital scheduling problem, we define the decision
variables (Z≥0 means nonnegative integers) as follows.

x1 ∈ Z≥0: number of nurses on Mo-Tu-We schedule
x2 ∈ Z≥0: number of nurses on Tu-We-Th schedule
x3 ∈ Z≥0: number of nurses on We-Th-Fr schedule
x4 ∈ Z≥0: number of nurses on Th-Fr-Sa schedule
x5 ∈ Z≥0: number of nurses on Fr-Sa-Su schedule
x6 ∈ Z≥0: number of nurses on Sa-Su-Mo schedule
x7 ∈ Z≥0: number of nurses on Su-Mo-Tu schedule

On Monday, there are x1 + x6 + x7 nurses working, so by requirement we should have

x1 + x6 + x7 ≥ 16.

Similarly, for the other days of the week, we have constraints

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 8.

Clearly ∑7
i=1 xi ≥ 1. Thus the requirement that two thirds of the day-shift nurses have week-

ends off can be expressed as
x1 + x2 + x3

∑7
i=1 xi

≥ 2
3

.

This can be transformed into a linear constraint

x1 + x2 + x3 − 2x4 − 2x5 − 2x6 − 2x7 ≥ 0.

4

Operations Research 1 (ISEN 320-501) Fall 2023

The objective is to minimize the total number of nurses ∑7
i=1 xi, so the model can be written as

min
7

∑
i=1

xi

s. t. x1 + x6 + x7 ≥ 16,

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 8,
3

∑
i=1

xi − 2
7

∑
i=4

xi ≥ 0,

xi ∈ Z≥0, i = 1, . . . , 7.

If we relax the integrality constraints, the result (from the script lin_model_scheduling.py)
is printed below.

The minimum number of nurses is 31.3.

x1 = 10.29

x2 = 0.29

x3 = 10.29

x4 = 2.43

x5 = 2.29

x6 = 4.29

x7 = 1.43

If we round them to a nearest integer solution x̄ = (10, 0, 10, 2, 2, 4, 1), we see that

x̄1 + x̄6 + x̄7 = 15 ̸≥ 16,

x̄1 + x̄2 + x̄7 = 11 ̸≥ 12,

x̄1 + x̄2 + x̄3 = 20 ≥ 18,

x̄2 + x̄3 + x̄4 = 12 ̸≥ 13,

x̄3 + x̄4 + x̄5 = 14 ̸≥ 15,

x̄4 + x̄5 + x̄6 = 8 ̸≥ 9,

x̄5 + x̄6 + x̄7 = 7 ̸≥ 8.

In other words, this rounded solution x̄ is infeasible. Instead, we should directly solve the
MILO model in the script int_model_scheduling.py, the result for which is printed below.

5

Operations Research 1 (ISEN 320-501) Fall 2023

The minimum number of nurses is 32.0.

x1 = 11.00

x2 = 0.00

x3 = 11.00

x4 = 2.00

x5 = 3.00

x6 = 4.00

x7 = 1.00

One of the most important features of MILO modeling is the use of 0/1 variables
(or sometimes called binary variables). An example is the following location covering
problem.

Example 3. A city is planning to set up new emergency centers at different possible locations.
Due to distances and one-way streets, an emergency center at

• location 1 can cater to patients in locations 1, 2, 4, 7;
• a center at location 2 can cater to patients in locations 2, 3, 5;
• a center at location 3 can cater to patients in locations 1, 3, 6;
• a center at location 4 can cater to patients in locations 2, 3, 4, 5;
• a center at location 5 can cater to patients in locations 1, 5, 6;
• a center at location 6 can cater to patients in locations 3, 4, 6;
• a center at location 7 can cater to patients in locations 2, 3, 7.

We need to cater to patients at all locations and would like to set up the minimum number of
emergency centers.
To model this problem, we can define our decision variables for i = 1, . . . , 7 by

xi =

1 if an emergency center is set up at location i,

0 otherwise.

To cover patients at the location 1, there are only three possible locations: 1, 3, and 5. Thus we
need

x1 + x3 + x5 ≥ 1.

6

Operations Research 1 (ISEN 320-501) Fall 2023

Similarly, we can write the covering constraints at other locations as

x1 + x2 + x4 + x7 ≥ 1,

x2 + x3 + x4 + x6 + x7 ≥ 1,

x1 + x4 + x6 ≥ 1,

x2 + x4 + x5 ≥ 1,

x3 + x5 + x6 ≥ 1,

x1 + x7 ≥ 1.

The goal is to minimize the sum

min
7

∑
i=1

xi.

We can code this model in the script model_covering.py and get the following result.

The minimum number of emergency centers is 3.0.

x1 = 1.0

x2 = 1.0

x3 = 1.0

x4 = 0.0

x5 = 0.0

x6 = 0.0

x7 = 0.0

The following knapsack problem is a very well-known problem in integer optimiza-
tion.

Example 4. One would like to carry different items to the camping ground in my knapsack.
They have a choice of n items. Item i produces an utility of ui for them. The volume of item i
is vi. The volume of the knapsack is V. The goal is to maximize the total utility of items put in
the knapsack.
To formulate a MILO model, we define our variables for each item i = 1, . . . , n as

xi ∈ {0, 1} : whether or not item i is chosen.

Then the knapsack volume constraint can be written as

n

∑
i=1

vixi ≤ V.

7

Operations Research 1 (ISEN 320-501) Fall 2023

The objective function is to maximize the total utility

max
n

∑
i=1

uixi.

2 Logical Constraints on 0/1 Variables

In MILO models, 0/1 variables are often used to indicate whether a certain condition
happens or not. For example, for a variable zi, we say that condition i is satisfied if
zi = 1, and zi = 0 otherwise, for some i = 1, 2, or 3. We can impose logical constraints
on these 0/1 as follows.

• “If-then” constraint: if condition 1 is satisfied, then we also need to satisfy condi-
tion 2

z2 ≥ z1, z1, z2 ∈ {0, 1}.

• Nonexclusive “either-or” constraint: either condition 1 is satisfied, or condition
2 is satisfied, and both of them can be satisfied at the same time

z1 + z2 ≥ 1, z1, z2 ∈ {0, 1}.

• Exclusive “either-or” constraint: either condition 1 is satisfied, or condition 2 is
satisfied, but they cannot be satisfied at the same time

z1 + z2 = 1, z1, z2 ∈ {0, 1}.

Sometimes we may compose our conditions with logical operations before in “if-then”
statement. The following cases are some examples on how we can do this.

• “Not” operation: to say that condition 2 is satisfied if condition 1 is not satisfied,
we can use

z2 ≥ 1− z1, z1, z2 ∈ {0, 1}.

• “And” operation: to say that condition 3 is satisfied if conditions 1 and 2 are
satisfied, we can use

z3 ≥ z1 + z2 − 1, z1, z2, z3 ∈ {0, 1}.

• “Or” operation: to say that condition 3 is satisfied if conditions 1 or 2 is satisfied,
we can use

z3 ≥ z1, z3 ≥ z2, z1, z2, z3 ∈ {0, 1}.

• “Xor” operation: to say that condition 3 is satisfied if conditions 1 xor 2 is satisfied

8

Operations Research 1 (ISEN 320-501) Fall 2023

(i.e., exactly one of conditions 1 and 2 is satisfied), we can use

z3 ≥ z′3, z1 + z2 + z′3 = 2z′′3 , z1, z2, z3, z′3, z′′3 ∈ {0, 1}.

Here, z′3 and z′′3 are auxiliary variables introduced to model the “xor” operation.
The following resource allocation problem is an example of the knapsack problem

with logical constraints.

Example 5. There are 6 projects considered for potential investment of the $100,000 budget
for the upcoming year. The required investment and end-of-year payout amounts are described
in the following table. We assume that partial investments are not allowed, that is, if a project

Project

1 2 3 4 5 6

Investment ($·1000) 10 25 35 45 50 60
Payout ($·1000) 12 30 41 55 65 77

is selected, then we must invest the full amount in it. Additionally, the following requirements
need to be satisfied.

• No more than three projects can be selected.
• If project 6 is chosen, then project 1 must also be chosen.
• Project 5 can be chosen only if project 2 is chosen.
• If project 3 is chosen, then project 4 cannot be chosen.

The objective is to maximize the total end-of-year payout from the investment.
To define our decision variables, for each project i = 1, . . . , 6, let

xi =

1, if we choose project i,

0, otherwise.

Without the additional requirements, we only have the budget constraint

10x1 + 25x2 + 35x3 + 45x4 + 50x5 + 60x6 ≤ 100.

The objective can be written as

max 12x1 + 30x2 + 41x3 + 55x4 + 65x5 + 77x6.

Each of the requirements can be written as follows.
• No more than three projects can be selected.

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3.

9

Operations Research 1 (ISEN 320-501) Fall 2023

• If project 6 is chosen, then project 1 must also be chosen.

x6 ≤ x1.

• Project 5 can be chosen only if project 2 is chosen.

x5 ≤ x2.

• If project 3 is chosen, then project 4 cannot be chosen.

x4 ≤ 1− x3.

We code this MILO model in model_allocation.py and use the solver SCIP to get the following
result.

The maximum payout is $119000.00.

The investment on each project is shown below.

x1: 1.0

x2: 1.0

x3: 0.0

x4: 0.0

x5: 0.0

x6: 1.0

The logical constraints can appear even when there are continuous variables, as
shown in the next example.

Example 6. Suppose that in Example 5, we now allow fractional investment but with a min-
imum for each project. The updated project information is listed in the table below. To update

Project

1 2 3 4 5 6

Investment ($·1000) 10 25 35 45 50 60
Payout ($·1000) 12 30 41 55 65 77
Min. Amount ($·1000) 2 5 4 9 6 7

the model, we define the following continuous decision variables in addition to x1, . . . , x6,

yi ≥ 0 : the amount invested in the project i, i = 1, . . . , 6.

We can impose constraints

mixi ≤ yi ≤ vixi, i = 1, . . . , 6,

10

Operations Research 1 (ISEN 320-501) Fall 2023

where mi > 0 is the minimum investment ammount for project i, while vi is the full investment
amount. In this way, we invest in the project i if and only if xi = 1. Accordingly, the budget
constraint becomes

y1 + y2 + y3 + y4 + y5 + y6 ≤ 100.

The objective can be written as

max
12
10

y1 +
30
25

y2 +
41
35

y3 +
55
45

y4 +
65
50

y5 +
77
60

y6.

We code this MILO model in the script model_fractional_allocation.py and get the follow-
ing result.

The maximum payout is $126000.00.

The investment on each project is shown below.

x1: 0.0

y1: $0.00

x2: 1.0

y2: $5000.00

x3: 0.0

y3: $0.00

x4: 1.0

y4: $45000.00

x5: 1.0

y5: $50000.00

x6: 0.0

y6: $0.00

We see that the total payout increases compared with Example 5 because we have more flexible
investment options for each project. We are now investing in projects 2, 4, 5, which are different
from the projects 1, 2, 6 previously.

In Example 6, we are enforcing the continuous variables yi to be zero if the cor-
responding 0/1 variable xi is zero. The modeling of such optional variable bound/-
linear constraint can be done in a more general setting. For some linear constraint
j = 1, . . . , m,

n

∑
i=1

ajixi ≤ bj,

we can “switch on or off” this constraint by an additional integer variable zj ∈ {0, 1}
by

n

∑
i=1

ajixi ≤ bj + Mzj,

where the parameter M is a “sufficiently large” number. Theoretically speaking, we

11

Operations Research 1 (ISEN 320-501) Fall 2023

should choose M such that during any algorithmic step (e.g., an simplex method iter-
ation), the sign of any linear expression involving M only depends on the sign of M.
In practice, assuming that our problem is bounded, we may adaptively increase the
value of M by a fixed multiplicative factor each time, until our objective value does not
change any more. There are also many problems where we can naturally get a good
choice of M from the problem data, as shown in the following example.

Example 7. A wholesale company specializing in one product considers the possibility of open-
ing up to m warehouses Wi of capacity bi, for i = 1, . . . , m, to serve n retail locations Rj, for
j = 1, . . . , n. The fixed cost of opening warehouse Wi is fi. The capacity of bi means that we
can ship up to bi units of product from warehouse Wi. Transporting one unit of the product
from Wi to Rj costs cij dollars. To satisfy the demand, at least dj units of the product must be
delivered to Rj. The goal is to decide which of the m warehouses to open and how many units of
the product should be shipped from each opened warehouse to each retail location, minimizing
the overall cost for the company.
As in the usual transportation problem, we define the continuous variables for each i = 1, . . . , m
and j = 1, . . . , n

xij ≥ 0 : the product quantity shipped from Wi to Rj.

To model the fixed cost, we introduce for each i = 1, . . . , m

yi =

1, if warehouse i is open,

0, otherwise.

The objective is to minimize the total cost of transportation plus the fixed charges of opening
warehouse:

min
m

∑
i=1

n

∑
j=1

cijxij +
m

∑
i=1

fiyi.

To satisfy the demand at Rj, we can write

m

∑
i=1

xij ≥ dj, j = 1, . . . , n.

We also need to make sure that the number of units shipped out of Wi does not exceed the
capacity:

n

∑
j=1

xij ≤ bi, i = 1, . . . , m.

In addition, if a warehouse is not opened, then no units can be shipped out of it:

if yi = 0, then xij = 0, j = 1, . . . , m.

12

Operations Research 1 (ISEN 320-501) Fall 2023

Note that this is an optional linear constraint, and bi is a natural choice for the big-M for every
xij, j = 1, . . . , n. Thus we can write our MILO model as

min
m

∑
i=1

n

∑
j=1

cijxij +
m

∑
i=1

fiyi,

s. t.
m

∑
i=1

xij ≥ dj, j = 1, . . . , n,

n

∑
j=1

xij ≤ bi, i = 1, . . . , m,

xij ≤ biyi, i = 1, . . . , m, j = 1, . . . , n,

xij ≥ 0, yi ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n.

An important application of MILO is to model piecewise linear functions that are
not convex nor concave. For simplicity, we focus on modeling continuous piecewise
linear functions on an interval I of finite length. Recall that a function f is piecewise
linear on I := {x ∈ R : a ≤ x ≤ ā} if we can find points a = a0 < a1 < · · · < al = ā,
such that on each subinterval Ik := {x ∈ R : ak−1 < x < ak}, k = 1, . . . , l, f (x) is an
affine linear function, i.e., there exist bk, ck ∈ R such that

f (x) = bkx + ck, ∀ x ∈ Ik, k = 1, . . . , l.

The continuity assumption then translates into conditions

f (ak) = akbk + ck = akbk+1 + ck+1, ∀ k = 1, . . . , l − 1.

Suppose we would like to model the equation y = f (x), x ∈ I. We can define auxiliary
variables

zk =

1, if x lies in the interval Ik,

0, otherwise.

By definition, we should have
l

∑
k=1

zk = 1.

Note that if x = ak for some k = 1, . . . , k − 1, then we can allow either zk = 1 or
zk+1 = 1. We need to enforce the linear constraints y = bkx + ck if zk = 1, which can be
written as

y ≤ bkx + ck + M(1− zk),

y ≥ bkx + ck −M(1− zk),

for some sufficiently large M > 0, e.g., M = max{supx∈I f (x),− infx∈I f (x)}. In prac-
tice, using this big-M model can sometimes lead to inefficiency in the solution step

13

Operations Research 1 (ISEN 320-501) Fall 2023

(see the next section). Thus we describe an alternative way to model piecewise linear
functions.

We observe that if f is a continuous piecewise linear function, then on each subin-
terval Ik, the value y should be a convex combination of f (ak−1), f (ak) in the same
way x is a convex combination of ak−1, ak. Thus we define more auxiliary variables
0 ≤ w0, w1, . . . , wk ≤ 1 as convex combination coefficients.

• If x /∈ I1, then w0 = 0, which can be expressed as

w0 ≤ z1.

• If x /∈ Ik and x /∈ Ik+1, k ≤ l − 1, then wk = 0, which can be expressed as

wk ≤ zk + zk+1, k = 1, . . . , l − 1.

• If x /∈ Il, then wl = 0, which can be expressed as

wl ≤ zl.

Then we can write x, y as convex combinations

1 =
l

∑
k=0

wk,

x =
l

∑
k=0

wkak,

y =
l

∑
k=0

wk f (ak).

Example 8. A large-scale grocery retailer must purchase onions for two of their stores. Onions
can be purchased from three farms. Here are the relevant details: Store 1 requires at least 1000
units and store 2 requires at least 2000 units of onions. Farm 1 sells onions at $3 per unit and
farm 2 sells onions at $4 per unit. Farm 3 sells onions in the following fashion. The first 300
units are sold for $3 per unit, the next 400 units are sold at a discounted rate of $2.5 per unit.
However, the price goes up after that to $5, as the farm believes that there may be more demand
than supply. For example, if 800 units are purchased from farm 3, then the cost is

$3 · 300 + $2.5 · 400 + $5 · 100 = $2400.

The transportation cost per unit from the farms to the stores are given below.

14

Operations Research 1 (ISEN 320-501) Fall 2023

Farm 1 Farm 2 Farm 3
Store 1 $1 $1 $2
Store 2 $2 $1 $1

The goal is to determine how many units of onions to purchase from each farm such that the
total cost is minimized. For i = 1, 2, 3 and j = 1, 2, let

xij ≥ 0 : number of units of onions to purchase from farm i for store j.

Let y ∈ R denote the cost of purchase from farm 3. The store demand constraints are

x11 + x12 + x13 ≥ 1000,

x21 + x22 + x23 ≥ 2000.

The objective is to minimize the total purchase and transportation cost

min 3(x11 + x21) + 4(x12 + x22) + y

+ x11 + x12 + 2x13 + 2x21 + x22 + x23.

To model the function y = f (x13 + x23), note that

f (0) = 0, f (300) = 900, f (700) = 1900, f (3000) = 13400.

For k = 1, 2, 3, let

zk ∈ {0, 1} denote whether x13 + x23 lies in the interval Ik,

and for k = 0, 1, 2, 3, let

0 ≤ wk ≤ 1 be the kth convex combination coefficient.

We can write the constraint y = f (x13 + x23) through the following ones:

w0 ≤ z1,

w1 ≤ z1 + z2,

w2 ≤ z2 + z3,

w3 ≤ z3,

z1 + z2 + z3 = 1,

w0 + w1 + w2 + w3 = 1,

300w1 + 700w2 + 3000w3 = x13 + x23,

900w1 + 1900w2 + 13400w3 = y.

15

Operations Research 1 (ISEN 320-501) Fall 2023

We code the MILO model in the script model_purchase.py and use SCIP to solve it. The result
is printed below.

The minimum total cost for onion purchase is 13100.000000000004.

x11 = 1000.0000000000001

x21 = 0.0

x31 = 0.0

x12 = 0.0

x22 = 1300.0000000000002

x32 = 700.0

3 A Glance at MILO Solution Methods

There are two major families of solution methods in solving MILO problems: branch-
and-bound methods and cutting plane methods. Each of them deserve much more
than what we can spend in this course. Our goal here is modest: to give an idea of
how MILO problems can be solved and how the solution methods are related to the
simplex method we used for LO problems. For any MILO problem (1), we define its
LO relaxation as

min / max cTx

s. t. Ax ≤ b,

x ∈ Rn1+n2 .

(2)

3.1 The Branch-and-bound Methods

Given our MILO problem, suppose we found a solution x̄ to the LO relaxation.
• If x̄ ∈ Rn1 ×Zn2 , then x̄ is feasible to the MILO problem;
• otherwise there exists n1 < i ≤ n1 + n2 such that x̄i is fractional. In this case, we

need to solve the problem with either of the two constraints
– xi ≥ ⌈x̄i⌉,
– xi ≤ ⌊x̄i⌋,

Note that at least one of them contains the true optimal solution to our MILO. This
branching procedure leads to a tree of LO subproblems. For example, for the LO relax-
ation of our MILO problem

LO0 : max
x∈Rn1+n2

cTx s. t. Ax ≤ b,

if we get a fractional solution x̄ such that x̄i /∈ Z, we then get two LO problems

LO1 : max
x∈Rn1+n2

cTx s. t. Ax ≤ b, xi ≥ ⌈x̄i⌉,

16

Operations Research 1 (ISEN 320-501) Fall 2023

and
LO2 : max

x∈Rn1+n2
cTx s. t. Ax ≤ b, xi ≤ ⌊x̄i⌋.

Then again if we get a fractional solution x̃ to LO1, with x̃j /∈ Z, we can continue the
branching procedure and get

LO3 : max
x∈Rn1+n2

cTx s. t. Ax ≤ b, xi ≥ ⌈x̄i⌉, xj ≥ ⌈x̃j⌉,

and
LO4 : max

x∈Rn1+n2
cTx s. t. Ax ≤ b, xi ≥ ⌈x̄i⌉, xj ≤ ⌊x̃j⌋.

While it seems that we may need to enumerate all possible integers for xn1+1, . . . , xn1+n2

in our feasible region, many of the LO problems in this procedure do not need any
further branching. We can prune the problem LOi if

• we find a solution x ∈ Rn1 ×Zn2 to the LO problem LOi;
• the LO problem LOi is infeasible; or
• the optimal value of LOi is worse than the best bound (the objective value of the

best solution we have found).
The pruning step, especially when we already obtained a high-quality bound, would
often greatly save our computational effort. We illustrate the branch-and-bound method
by the following simple example.

Example 9. Consider the MILO problem

max 5.5x1 + 2.1x2

s. t. − x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ∈ Z≥0.

The solution of the LO relaxation is x1 = 1.3, x2 = 3.3, while the LO optimal value is
z = 14.08, which gives an upper bound on our maximization problem. We can branch on
the variable x1: x1 ≤ 1 and x2 ≥ 2.

LO0 : z = 14.08,
x1 = 1.3, x2 = 3.3

LO1 : z = 11.8,
x1 = 1, x2 = 3

x1 ≤ 1

LO2 : z = 12.05,
x1 = 2, x2 = 0.5

x1 ≥ 2

Here, the branch LO1 is pruned by integrality. From LO2 we branch on x2: x2 ≤ 0 and x2 ≥ 1.

17

Operations Research 1 (ISEN 320-501) Fall 2023

LO0 : z = 14.08,
x1 = 1.3, x2 = 3.3

LO1 : z = 11.8,
x1 = 1, x2 = 3

x1 ≤ 1

LO2 : z = 12.05,
x1 = 2, x2 = 0.5

LO3: z = 11.6875,
x1 = 2.125, x2 = 0

x2 ≤ 0

LO4 : z = −∞
infeasible

x2 ≥ 1

x1 ≥ 2

Now the branch LO3 is pruned by bound, and the branch LO4 is pruned by infeasibility. The
optimal value of the MILO problem is thus z = 11.8 with an optimal solution x1 = 1, x2 = 3.

The numerical performance of the branch-and-bound methods will often depend
on the branching rule, i.e., which LO problem to solve next. There are numerous branch-
ing rules and heuristics for high-quality solutions for pruning based on the structure
of the MILO problem. We remark that in each branching step, we are simply resolving
the LO problem with one additional inequality constraint. Thus we may use the cur-
rent primal-dual solution information in our simplex tableau to warm start the dual
simplex method.

3.2 The Cutting Plane Methods

Recall that the feasible regions of LO problems are polyhedra. If all of the vertices of
the feasible region of the LO relaxation (2) are integer points for the last n2 coordinates,
then the simplex method will find an optimal solution to our MILO problem (1). Such
polyhedra are called integral, but they are uncommon in practice. The main idea of
the cutting plane methods is to artificially add linear constraints that are valid for all
(mixed-)integer points while being able to “cut off” non-integer vertices.

As an simple illustration, we consider the following discrete (pure-integer) opti-
mization case (i.e., n1 = 0, n = n2). Suppose that we have found a basic optimal
solution x̄ to the standard form of the LO relaxation (2), where x̄i = b̄i /∈ Z for some
i ∈ B. The corresponding constraint in the tableau is

xi + ∑
j∈N

āijxj = b̄i. (3)

We claim that the following inequality is valid for all feasible solutions to the MILO
problem (1)

b̄i − ⌊b̄i⌋ − ∑
j∈N

(āij − ⌊āij⌋)xj ≤ 0. (4)

18

Operations Research 1 (ISEN 320-501) Fall 2023

To see this, note that since xj ∈ Z for each j ∈ N, we have

⌊b̄i⌋ =
⌊

∑
j∈N

āijxj

⌋
≥ ∑

j∈N
⌊āij⌋xj.

By substituting (3) in the above inequality, we obtain the Gomory fractional cut (4).

Example 10. Consider the same MILO problem

max 5.5x1 + 2.1x2

s. t. − x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ∈ Z≥0.

We may introduce slack variables x3, x4 ∈ Z≥0 for the inequality constraints, due to the inte-
grality of the left-hand side coefficients and the right-hand sides.

max 5.5x1 + 2.1x2

s. t. − x1 + x2 + x3 = 2,

8x1 + 2x2 + x4 = 17,

x1, x2, x3, x4 ∈ Z≥0.

Suppose we have found the simplex tableau associated with the optimal solution x1 = 1.3, x2 =

3.3 to its LO relaxation.

z x1 x2 x3 x4 rhs basis
1 0 0 0.58 0.76 14.08 z
0 0 1 0.8 0.1 3.3 x2

0 1 0 −0.2 0.1 1.3 x1

In particular, the second row can be written as

x2 + 0.8x3 + 0.1x4 = 3.3.

The Gomory fractional cut can be applied with i = 2, N = {3, 4}, b̄2 = 3.3, ā23 = 0.8, and
ā24 = 0.1

0.8x3 + 0.1x4 ≥ 0.3.

Since x3 = 2 + x1 − x2 and x4 = 17− 8x1 − 2x2, this yields

x2 ≤ 3.

19

Operations Research 1 (ISEN 320-501) Fall 2023

We plot this cut in Figure 1.

x1

x2

x2 ≤ 3

Figure 1: Illustration of a Gomory fractional cut

The idea of rounding coefficients can be used to generate cuts for the mixed-integer
case, which is known as the Gomory mixed-integer cuts. Suppose that we have found a
basic feasible solution x̄ to the LO relaxation (2), with the corresponding row (3) where
i ∈ B ∩ {n1 + 1, . . . , n}. Let N1 := N ∩ {1, . . . , n1}, N2 := N ∩ {n1 + 1, . . . , n1 + n2},
f0 := b̄i − ⌊b̄i⌋, and f j := āij − ⌊āij⌋, for j ∈ N.
The Gomory mixed integer cut can be written as

∑
j∈N2:
f j≤ f0

f j

f0
xj + ∑

j∈N2:
f j> f0

1− f j

1− f0
xj + ∑

j∈N1:
āij≥0

āij

f0
xj − ∑

j∈N1:
āij<0

āij

1− f0
xj ≥ 1. (5)

Example 10 (continued). Here we have f0 = 0.3, f3 = 0.8, and f4 = 0.1. Note that we do
not have any continuous variable N1 = ∅, so the formula (5)

∑
j∈N2:
f j≤ f0

f j

f0
xj + ∑

j∈N2:
f j> f0

1− f j

1− f0
xj ≥ 1

then becomes
1− 0.8
1− 0.3

x3 +
0.1
0.3

x4 ≥ 1 ⇐⇒ 6x3 + 7x4 ≥ 21.

Using x3 = 2 + x1 − x2 and x4 = 17− 8x1 − 2x2, we can write the cut in terms of x1 and x2

as
5x1 + 2x2 ≤ 11.

We plot this cut in Figure 2. Compared with Figure 1, it shows that Gomory mixed-integer cut
is stronger, in the sense that it “cuts off” more non-integer points in the LO relaxation.

The proof of the Gomory mixed-integer cuts (5) consists of a sequence of mixed-
integer cuts, which are presented below.

20

Operations Research 1 (ISEN 320-501) Fall 2023

x1

x2

5x1 + 2x2 ≤ 11

Figure 2: Illustration of a Gomory mixed-integer cut

Lemma 1. If x1 + ∑n
j=2 xj ≥ b, x1 ≥ 0, x2, . . . , xn ∈ Z, and f := b− ⌊b⌋ > 0, then

x1

f
+

n

∑
j=2

xj ≥ ⌈b⌉.

Proof. Note that

f
(
⌈b⌉ −

n

∑
j=2

xj

)
= f + f

(
⌊b⌋ −

n

∑
j=2

xj

)
≤ f +

(
⌊b⌋ −

n

∑
j=2

xj

)
= b−

n

∑
j=2

xj ≤ x1.

Divide both sides by f and we are done.

Lemma 2. If ∑n
j=2 xj ≤ b + x1, x1 ≥ 0, x2, . . . , xn ∈ Z, and f := b− ⌊b⌋ > 0, then

n

∑
j=2

xj ≤ ⌊b⌋+
x1

1− f
.

Proof. Apply Lemma 1 with −b and −xj for j = 2, . . . , n. Note that ⌊−b⌋ = −⌈b⌉ and
−b + ⌊−b⌋ = 1− f .

Lemma 3. Consider ∑n
j=2 ajxj ≤ b + x1, where x1 ≥ 0 and xj ∈ Z≥0 for j = 2, . . . , n. Let

f := b− ⌊b⌋ and f j := aj − ⌊aj⌋ for j = 2, . . . , n. Then

∑
j: f j≤ f
⌊aj⌋xj + ∑

j: f j> f

(
⌊aj⌋+

f j − f
1− f

)
xj ≤ ⌊b⌋+

x1

1− f
.

Proof. Note that

∑
j: f j≤ f
⌊aj⌋xj + ∑

j: f j> f
⌈aj⌉xj ≤ b + x1 + ∑

j: f j> f
(1− f j)xj.

The left-hand side are all integers, so we can apply Lemma 2 with x1 + ∑j: f j> f (1 −
f j)xj ≥ 0 regarded as the continuous value.

21

Operations Research 1 (ISEN 320-501) Fall 2023

Proposition 4 (Gomory mixed-integer cuts). If x ∈ R
n1
≥0 ×Z

n2
≥0 satisfies (3), then it also

satisfies (5). Moreover, the point xi = b̄i with xj = 0 for all j ∈ N does not.

Proof. Note that the equation (3) implies

xi + ∑
j∈N2

āijxj ≤ b̄i + ∑
j∈N1:
āij<0

−āijxj.

Now apply Lemma 3 and we get

xi + ∑
j∈N2:
f j≤ f

⌊āij⌋xj + ∑
j∈N2:
f j> f

(
⌊āij⌋+

f j − f0

1− f0

)
≤ ⌊b̄i⌋+ ∑

j∈N1:
āij<0

−āij

1− f0
xj.

Now substitute xi using the equation (3) and we are done. The last claim follows from
f0 > 0.

We remark that there are many more types cuts used in MILO problems, most of
which exploits some further structure of the data A and b. Due to the limit of this
course, we refer any interested reader to the textbook [1] for further study.

4 More on Integer Modeling

Example 11. A salesperson wants to visit n cities. The distance between the different cities
i, j ∈ {1, . . . , n} is denoted as dij. Starting at city 1, the salesperson must visit each city
exactly once and then return to city 1 (see Figure 3). The goal is to minimize the total distance
traveled. To model this problem, we can define variables for each i ̸= j, i, j ∈ {1, . . . , n}

xij =

1, if the salesperson travels from city i to city j,

0, otherwise.

The objective is to minimize the total distance

min
n

∑
i=1

∑
j ̸=i

dijxij.

Note that the salesperson should arrive at and leave from each city exactly once, which can be
written as the constraints

∑
j ̸=i

xij = 1, i = 1, . . . , n,

∑
i ̸=j

xij = 1, j = 1, . . . , n.

22

Operations Research 1 (ISEN 320-501) Fall 2023

1

2

3

4

5

6

(a) a feasible travel plan

1

2

3

4

5

6

(b) an infeasible travel plan

Figure 3: Traveling plans of visiting 6 cities

The travel plan in Figure 3b satisfies all these constraints, but is still infeasible as we go back
to city 1 (where we started) before we visited all of the 6 cities. We call the paths such as
1→ 2→ 3→ 1 subtours, which need to be eliminated by additional constraints

∑
i∈S,j/∈S

xij ≥ 1, for all subsets S ⊊ {1, . . . , n}, 2 ≤ |S| ≤ n− 2.

The number of the subtour elimination constraints in Example 11 is typically huge:
for n ≥ 4, we would have 2n − 2− 2n possible subtours, which is over 1 million for a
mere number of 20 cities! People thus often use a technique called constraint generation
to solve this problem. The idea is to solve the problem with only a subset of the con-
straints and dynamically add the rest as needed. In Example 11, once we get a solution
x̄ij, we can start out tour from city 1 and move to the city j such that x̄1j = 1. By repeat-
ing the procedure, we would either visit all the cities before going back to city 1, or find
a subtour S̄. In the former case, we have successfully solved the traveling salesperson
problem, while in the latter we need to add the subtour elimination constraint for S̄
and resolve the problem.

Example 12. A paper mill produces large rolls of paper of width W, which are then cut into
rolls of various smaller widths in order to meet demand. Let m be the number of different widths
that the mill produces. The mill receives an order for bi rolls of width wi for i = 1, . . . , m, where
wi ≤W. The goal is to find the smallest number of large rolls needed to meet the demand.
One way to formulate our MILO model is as follows. Suppose p is an upper bound on the
number of paper rolls, such as p = ∑m

i=1 bi. We can define our decision variables for j =

23

Operations Research 1 (ISEN 320-501) Fall 2023

1, . . . , n as

yj =

1, if the large roll j is used,

0, otherwise,

and for i = 1, . . . , m, j = 1, . . . , p,

zij ∈ Z≥0 : the number of rolls of width wi to be cut out of roll j.

Then our MILO model can be written as

min
p

∑
j=1

yj

s. t.
m

∑
i=1

wizij ≤Wyi, i = 1, . . . , p,

p

∑
j=1

zij ≥ bi, i = 1, . . . , m,

yj ∈ {0, 1}, j = 1, . . . , p,

zij ∈ Z≥0, i = 1, . . . , m, j = 1, . . . , p.

(6)

This model has some disadvantages: its LO relaxation is usually weak, and there is no easy
way to round fractional solutions from the LO relaxation into feasible integer solutions because
we have inequality constraints of both directions. Alternatively, people consider the following
formulation. Let s ∈ Zm denote a cutting pattern, where si rolls of width wi are cut out of the
large paper roll. The set of all cutting patterns is

S :=

{
s ∈ Zm

≥0 :
m

∑
i=1

wisi ≤W

}
.

Now we can define for each s ∈ S ,

xs ∈ Z≥0 : the number of rolls cut according to the pattern s.

The only constraints are

∑
s∈S

sixs ≥ bi, i = 1, . . . , m.

Thus our alternative MILO model is

min ∑
s∈S

xs

s. t. ∑
s∈S

sixs ≥ bi, i = 1, . . . , m,

xs ∈ Z≥0, s ∈ S .

(7)

24

Operations Research 1 (ISEN 320-501) Fall 2023

The number of variables |S| can be potentially large, which motivates people to use the column
generation algorithm, as outlined below. The dual of its LO relaxation is

max
m

∑
i=1

biui

s. t.
m

∑
i=1

siui ≤ 1, ∀ s ∈ S ,

u1, . . . , um ≥ 0.

(8)

Suppose we use a subset S ′ of S and find a primal optimal solution x̄s, s ∈ S ′ and a dual
optimal solution ū1, . . . , ūm. We can extend x̄s to all of S by setting x̄s = 0 for all s ∈ S \ S ′.
Thus when the dual solution ū is feasible, we know that x̄ is optimal by the weak duality. This
is equivalent to check that the constraints

m

∑
i=1

siūi ≤ 1

are satisfied for all s ∈ S . Or equivalently, if the following problem

max
m

∑
i=1

ūisi, s ∈ S (9)

has an optimal value is no more than 1, then ū is feasible. Otherwise any s ∈ S such that

∑m
i=1 ūisi > 1 can be added as a new variable S′ ← S′ ∪ {s}. The problem (9) is in fact a

knapsack problem (cf. Example 4) by the definition of S .

Example 13. The famous puzzle game sudoku can be formulated as an integer optimization
problem. The goal is to fill numbers {1, 2, . . . , 9} in the empty locations and the rule is that
every number should appear only once in each row, in each column, and in each 3× 3 square.
Some numbers are provided in the beginning of the puzzle that cannot be changed. We can
define variables for i, j, k ∈ {1, 2, . . . , 9},

xi,j,k =

1, if the number k is selected at the location (i, j),

0, otherwise.

The constraints consist of the following. Exactly one number should be selected at each location:

9

∑
k=1

xi,j,k = 1, i, j = 1, . . . , 9.

For the given numbers, we fix the corresponding variables to 1:

xi,j,k = 1, if Sij = k.

25

Operations Research 1 (ISEN 320-501) Fall 2023

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4
Figure 4: A sudoku puzzle

For each row and column, every number should appear only once:

9

∑
j=1

xi,j,k = 1, i, k = 1, . . . , 9,

and
9

∑
i=1

xi,j,k = 1, j, k = 1, . . . , 9.

For each block, every number should appear only once:

3

∑
i′′=1

3

∑
j′′=1

x3(i′−1)+i′′,3(j′−1)+j′′,k = 1, i′, j′ = 1, . . . , 3, k = 1, . . . , 9.

The objective is not needed, or we can set trivially

min 0.

We can code this model in model_sudoku.py and get the following solution to the puzzle shown
in Figure 4.

Found a solution to the sudoku puzzle:

2 5 8 7 3 6 9 4 1

26

Operations Research 1 (ISEN 320-501) Fall 2023

6 1 9 8 2 4 3 5 7

4 3 7 9 1 5 2 6 8

3 9 5 2 7 1 4 8 6

7 6 2 4 9 8 1 3 5

8 4 1 6 5 3 7 2 9

1 8 4 3 6 9 5 7 2

5 7 6 1 4 2 8 9 3

9 2 3 5 8 7 6 1 4

References

[1] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Program-
ming. Springer International Publishing, 2014.

27

	Mixed-integer Linear Optimization and Computer Tools
	Logical Constraints on 0/1 Variables
	A Glance at MILO Solution Methods
	The Branch-and-bound Methods
	The Cutting Plane Methods

	More on Integer Modeling

