
Linear Optimization Models

Shixuan Zhang

ISEN 320-501, Fall 2023

1 Linear Optimization Formulations

A linear optimization (LO) model is a constrained optimization model with continu-
ous variables, affine linear constraints, and a linear objective function. Recall that a
function f : Rn → R is called affine linear if there exist f0, f1, . . . , fn ∈ R such that

f (x) = f0 + f1x1 + · · ·+ fnxn,

for any (x1, . . . , xn) ∈ Rn. It is further linear if f0 = 0. Thus given problem data
c1, . . . , cn, b1, . . . , bm ∈ R, and aij ∈ R for i = 1, . . . , n and j = 1, . . . , m, a simple form of
linear optimization can be formulated by

min / max c1x1 + · · · + cnxn

s. t. a11x1 + · · · + a1nxn ≤ b1

...
...

am1x1 + · · · + amnxn ≤ bm

x1, · · · xn ∈ R

(1)

or simply as

min / max
n

∑
i=1

cixi

s. t.
n

∑
i=1

ajixi ≤ bj, j = 1, . . . , m,

xi ∈ R, i = 1, . . . , n.

An alternative way is to use a matrix and vectors

A =


a11 · · · a1n
...

am1 · · · amn

 , b =


b1
...

bm

 , c =


c1
...

cn

 , (2)

1

Operations Research 1 (ISEN 320-501) Fall 2023

and write our LO model more compactly as

min / max cTx

s. t. Ax ≤ b,

x ∈ Rn.

(3)

Here, the convention is that for any two vectors u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn,
we write

u ≤ v ⇐⇒ ui ≤ vi, i = 1, . . . , n.

We claim that any linear optimization problem in general can be transformed into the
above simple form (1) or (2). We have already seen that an inequality constraint Ax ≥ b
can be rewritten as −Ax ≤ −b. When we have equality constraints, we can always
reformulate them as

Aeqx = beq ⇐⇒
[

Aeq

−Aeq

]
x ≤

[
beq

−beq

]
. (4)

When we have explicit bounds on variables, for example,

xlb
i ≤ xi ≤ xub

i , i = 1, . . . , n, (5)

we can also write them as inequality constraints, with ei ∈ Rn that has 1 in its ith
component and 0 in all other components,[

−eTi
eTi

]
x ≤

[
−xlb

i
xub

i

]
. (6)

Therefore, the formulation (1) or (2) is a conceptually simple way of writing any LO
model. In practice, however, it is not always necessary that we convert a LO model
into such formulation.

Example 1. A farmer wants to determine how many acres of corn and wheat to plant this year.
Related information is given as follows.

• An acre of wheat yields 25 bushels of wheat and requires 10 hours of labor per week.
• An acre of corn yields 10 bushels of corn and requires 4 hours of labor per week.
• All wheat and corn can be sold at $4 a bushel.
• Seven acres of land and 40 hours of labor per week are available.
• Government regulations require that at least 30 bushels of corn be produced.

The goal is to maximize the total revenue. To formulate it as a LO model, let x1 denote the
number of acres of corn to plant and x2 the number of acres of wheat to plant this year, both of

2

Operations Research 1 (ISEN 320-501) Fall 2023

which are continuous and nonnegative

x1, x2 ≥ 0 ⇐⇒ −x1 ≤ 0,−x2 ≤ 0.

Their upper bounds are not explicitly given to us. For the first constraint, we notice that our
land area is limited

x1 + x2 ≤ 7.

We write the labor time restriction as our second constraint

4 · x1 + 10 · x2 ≤ 40.

The government regulations on corn production gives us the third constraint

10 · x1 ≥ 30 ⇐⇒ −x1 ≤ −3.

Note that the variable bound −x1 ≤ 0 is implied by this constraint and can thus be discarded.
The objective is to maximize the revenue, which is

max 4 · 10 · x1 + 4 · 25 · x2.

This LO model can also be written in the matrix form (2) with

A =


1 1
4 10
−1 0
0 −1

 , b =


7

40
−3
0

 , c =

[
40

100

]
.

2 Computer Modeling Tools and Solvers

We have seen two mathematically equivalent ways of writing a LO model. However,
depending on the input problem data, sometimes it is more convenient to use the first
way (1), rather than the second one (2), in terms of computer programming. We will
mainly use Python 3.11 for our computer programming. There are two types of com-
puter tools used for optimization problems:

• modeling interface, which facilitates model building by providing variable and
constraint handles, and sometimes also a domain-specific language for constraints
and objective expressions;

• underlying solver, which takes the problem data and executes appropriate nu-
merical algorithms that aim to find optimal solutions.

For this course, we use the following two Python packages: OR-Tools 9.5 and SciPy 1.11.

3

Operations Research 1 (ISEN 320-501) Fall 2023

The installation guides can be found on https://developers.google.com/optimization/

install/python and https://scipy.org/install/, respectively. The package OR-Tools

provides a full modeling interface to LO and mixed-integer linear optimization (MILO)
problems. Its installation automatically includes some open-source solvers, such as
GLOP and PDLP, and it also connects to proprietary solvers such as Gurobi and CPLEX.
The package SciPy is a popular scientific computing Python package, which provides
a thin wrapper of a powerful open-source LO and MILO solver HiGHS. Next we briefly
describe and compare ways of building and solving LO models using OR-Tools and
SciPy.

We illustrate the modeling using Example 1 and begin with OR-Tools, which is often
the more convenient one to use, especially for beginners. The module can be loaded as
follows.

from ortools.linear_solver import pywraplp

Next we declare a LO solver, GLOP.

solver = pywraplp.Solver.CreateSolver("GLOP")

To define continuous variables, we can use the NumVar function in the Solver class.

x1 = solver.NumVar(0.0, solver.infinity(), "x1")

x2 = solver.NumVar(0.0, solver.infinity(), "x2")

The first two arguments are the lower and upper bounds of the defined variable (as
defind in (5)). Here, we set the lower bounds to be 0.0, and because we do not know
any upper bound of the variables, we put solver.infinite() (i.e., +∞) as the second
argument. The third argument, "x1" or "x2", is the variable name, which can be of help
if we want to debug or export the model later. The constraints in Example 1 can be
coded as follows.

solver.Add(x1 + x2 <= 7)

solver.Add(4*x1 + 10*x2 <= 40)

solver.Add(-x1 <= -3)

To set the objective function, we can use the following code.

solver.Maximize(40*x1 + 100*x2)

Now we are ready to let the solver solve this model.

status = solver.Solve()

The status stores the information returned by the solver, which can be used to check
whether we have found an optimal solution.

if status == pywraplp.Solver.OPTIMAL:

print("Optimal␣value␣=", solver.Objective().Value())

4

https://developers.google.com/optimization/install/python
https://developers.google.com/optimization/install/python
https://scipy.org/install/

Operations Research 1 (ISEN 320-501) Fall 2023

print("x1␣=", x1.solution_value())

print("x2␣=", x2.solution_value())

else:

print("The␣solver␣is␣unable␣to␣find␣an␣optimal␣solution.")

After executing the script, an output is displayed below.

Optimal value = 399.99999999999994

x1 = 3.0

x2 = 2.7999999999999994

As OR-Tools connects to different solvers, we can replace the definition of solver in the
OR-Tools model with the following line.

solver = pywraplp.Solver.CreateSolver("Clp")

Without any changes to other parts, the output could become the following.

Optimal value = 400.0

x1 = 5.0

x2 = 2.0

This shows us that calling different underlying solvers may give different optimal so-
lutions, even when the model is unchanged.

Given the problem data matrix and vectors, we can also use SciPy to solve this LO
model. The modules can be loaded using the following code.

import numpy as np

from scipy.optimize import linprog

The problem data can be coded as follows.

c = np.array([40, 100])

b = np.array([7, 40, -3, 0])

A = np.array([[1, 1],

[4, 10],

[-1, 0],

[0, -1]])

Note that SciPy by default only takes minimization problems, so we call the linprog

function with arguments -c, b, and A, to solve the LO model.

result = linprog(-c, A_ub=A, b_ub=b)

Here, keywords A_ub and b_ub refer to the inequality constraints in (2). When the prob-
lem has equality constraints (as in (4)) and variable bounds (as in (5)), they can be
directly added using keywords A_eq, b_eq, and bounds. We now retrieve the results
(with the opposite of the optimal value).

5

Operations Research 1 (ISEN 320-501) Fall 2023

print(result.message)

print("Optimal␣value␣=", -result.fun)

print("[x1␣x2]␣=", result.x)

The output is displayed below.

Optimization terminated successfully. (HiGHS Status 7: Optimal)

Optimal value = 400.0

[x1 x2] = [3. 2.8]

To summarize, compared with SciPy, the package OR-Tools allows
(i) adding constraints by directly using variable handles, without the need to write

down the matrix representation;
(ii) both minimization and maximization;

(iii) an easy change of the underlying solver.
However, SciPy can be more lightweight sometimes and connects to the solver HiGHS.
One should choose their computer tools depending on the problem and the purpose
of use. For this course, we will mostly rely on OR-Tools for simplicity.

3 More Examples and Models

Example 2. A student aims to improve their diet. Based on a nutrition specialist recommenda-
tion, they want their daily intake to contain at least 60 g of protein, 800 mg of calcium, 75 mg of
vitamin C, and 2,000 calories. They would like to find a least expensive menu consisting of five
food types: almond butter, brown rice, orange juice, salmon, and wheat bread. The serving size,
cost per serving, and nutrition information for each food type is provided in the table below.

Food type Cost
($)

Protein
(g)

Calcium
(mg)

Vitamin C
(mg) Calories

Almond butter (100 g) 2.90 15 270 1 600
Brown rice (200 g) 3.20 5 20 0 215
Orange juice (250 g) 0.50 2 25 106 110
Salmon (150 g) 4.50 39 23 0 280
Wheat bread (25 g) 0.30 3 35 0 66

Required ingestion - 60 800 75 2,000

We define decision variables for the amount of each food type to be consumed daily, all of
which are nonnegative:

6

Operations Research 1 (ISEN 320-501) Fall 2023

x1 ≥ 0: servings of almond butter consumed daily,
x2 ≥ 0: servings of brown rice consumed daily,
x3 ≥ 0: servings of orange juice consumed daily,
x4 ≥ 0: servings of salmon consumed daily,
x5 ≥ 0: servings of wheat bread consumed daily.

The constraints express the minimum daily requirements for protein

15x1 + 4x2 + 2x3 + 39x4 + 3x5 ≥ 60,

for calcium
270x1 + 20x2 + 25x3 + 23x4 + 35x5 ≥ 800,

for vitamin C
x1 + 106x3 ≥ 75,

and for calories
600x1 + 215x2 + 110x3 + 280x4 + 66x5 ≥ 2000.

The objective is to minimize the cost, which is a linear function of the decision variables:

min 2.9x1 + 3.2x2 + 0.5x3 + 4.5x4 + 0.3x5.

We program the model in the script model_diet.py, and get the following output.

The cost of a least expensive diet is $9.09.

The intake amount of each food type in the diet is shown below.

Almond butter: 0.00 g

Brown rice: 0.00 g

Orange juice: 176.89 g

Salmon: 0.00 g

Wheat bread: 728.09 g

Example 3. An investor is considering 6 projects for potential investment for the upcoming
year. The required investment and end-of-year payout amounts are described in the following
table. Partial investment (i.e., financing only a fraction of the project instead of the whole

Project

1 2 3 4 5 6

Investment ($·1000) 10 25 35 45 50 60
Payout ($·1000) 12 30 41 55 65 77

project) is allowed for each project, with the payout proportional to the investment amount. For

7

Operations Research 1 (ISEN 320-501) Fall 2023

example, if the investor decides to invest $5,000 in project 2, the corresponding payout will be
$30,000·($5,000/$25,000)=$6,000. There are $100,000 available for investment.

We define variables

0 ≤ xi ≤ 1: fraction of project i financed, for i = 1, . . . , 6.

The only constraint is the limit on the investment, which is

10x1 + 25x2 + 35x3 + 45x4 + 50x5 + 60x6 ≤ 100.

The objective is to maximize the total payout:

max 12x1 + 30x2 + 41x3 + 55x4 + 65x5 + 77x6.

We program the model in the script model_allocation.py, and get the following output.

The maximum payout is $129166.67.

The investment on each project is shown below.

Project 0: $0.00

Project 1: $0.00

Project 2: $0.00

Project 3: $0.00

Project 4: $50000.00

Project 5: $50000.00

Some models are not immediately LO models, that is, there could be nonlinear
constraints or integer variables, but they can be reformulated or relaxed as LO models.

Example 4. A painter needs to complete a job that requires 50 gallons of brown paint and 50
gallons of gray paint. The required shades of brown and gray can be obtained my mixing the
primary colors (red, yellow, and blue) in the proportions given in the following table. The same

Color Red Yellow Blue

Brown 40% 30% 30%
Gray 30% 30% 40%

shades can be obtained by mixing secondary colors (orange, green, and purple), each of which
is based on mixing two out of three primary colors in equal proportions (red/yellow for orange,
yellow/blue for green, and red/blue for purple). The painter currently has 20 gallons each of
red, yellow, and blue paint, and 10 gallons each of orange, green, and purple paint. If needed,
they can purchase any of the primary color paints for $20 per gallon, however they would like
to save by utilizing the existing paint supplies as much as possible.

8

Operations Research 1 (ISEN 320-501) Fall 2023

We use indices i = 1, . . . , 6, for red, yellow, blue, orange, green, and purple colors, respec-
tively, and indices j = 1, 2, for brown and gray colors, respectively. Our decision variables can
be defined as

xij ≥ 0: gallons of paint of color i used to obtain color j paint,

for i = 1, . . . , 6, j = 1, 2, and

yi ≥ 0: gallons of paint of color i purchased, i = 1, 2, 3.

The total amount of brown and gray paint made must be at least 50 gallons each:

6

∑
i=1

xij ≥ 50, j = 1, 2.

The amount of paint used should not exceed its availability

xi1 + xi2 − yi ≤ 20, i = 1, 2, 3,

xi1 + xi2 ≤ 10, i = 4, 5, 6.

To express the constraints ensuring that the mixing yields the right shade of brown, note that
only three out of six colors used for mixing contain red, and the total amount of red paint
(including that coming from orange and purple paints) used in the brown mix is

x11 + 0.5x41 + 0.5x61.

Hence, a constraint for the proportion of red color in the brown mix can be written as follows:

x11 + 0.5x41 + 0.5x61

∑6
i=1 xi1

= 0.4.

We can multiply both sides by ∑6
i=1 xi1 and reformulate it as a linear constraint

0.6x11 − 0.4x21 − 0.4x31 + 0.1x41 − 0.4x51 + 0.1x61 = 0.

Similarly, the proportion of yellow and blue colors in the brown mix is given by:

x21 + 0.541 + 0.5x51

∑6
i=1 xi1

= 0.3 ⇐⇒ −0.3x11 + 0.7x21 − 0.3x31 + 0.2x41 + 0.2x51 − 0.3x61 = 0,

and

x31 + 0.5x51 + 0.5x61

∑6
i=1 xi1

= 0.3 ⇐⇒ −0.3x11 − 0.3x21 + 0.7x31 − 0.3x41 + 0.2x51 + 0.2x61 = 0.

9

Operations Research 1 (ISEN 320-501) Fall 2023

The constraints describing the proportion of each of the primary colors in the gray paint mix
can be derived analogously:

0.7x12 − 0.3x22 − 0.3x32 + 0.2x42 − 0.3x52 + 0.2x62 = 0,

−0.3x12 + 0.7x22 − 0.3x32 + 0.2x42 + 0.2x52 − 0.3x62 = 0,

−0.4x12 − 0.4x22 + 0.6x32 − 0.4x42 + 0.1x52 + 0.1x62 = 0.

Finally, we aim to minimize the cost of purchasing primary color paints:

min 20
3

∑
i=1

yi.

We code the LO model in the script model_mixing.py and the output is displayed below.

The minimum paint cost is 200.00.

x11 = 15.0 x12 = 10.0

x21 = 10.0 x22 = 10.0

x31 = 15.0 x32 = 10.0

x41 = 10.0 x42 = 0.0

x51 = 0.0 x52 = 10.0

x61 = 0.0 x62 = 10.0

y1 = 5.0

y2 = 0.0

y3 = 5.0

Example 5. A hospital uses a 12-hour shift schedule for its nurses, with each nurse working
either day shifts (7:00 am-7:00 pm) or night shifts (7:00 pm-7:00 am). Each nurse works 3 con-
secutive day shifts or 3 consecutive night shifts and then has 4 days off. The hospital is aiming
to design a schedule for day-shift nurses that minimizes the total number of nurses employed.
The minimum number of nurses required for each day shift during a week is given in the follow-
ing table:

Day of week/shift Nurses required

Monday (Mo) 16
Tuesday (Tu) 12
Wednesday (We) 18
Thursday (Th) 13
Friday (Fr) 15
Saturday (Sa) 9
Sunday (Su) 7

In addition, it is required that at least half of the day-shift nurses have weekends (Saturday and

10

Operations Research 1 (ISEN 320-501) Fall 2023

Sunday) off.

Note that a nurse’s schedule can be defined by the first day of the three-day cycle. Thus we
define the decision variables as follows.

x1 ∈ Z≥0: number of nurses on Mo-Tu-We schedule
x2 ∈ Z≥0: number of nurses on Tu-We-Th schedule
x3 ∈ Z≥0: number of nurses on We-Th-Fr schedule
x4 ∈ Z≥0: number of nurses on Th-Fr-Sa schedule
x5 ∈ Z≥0: number of nurses on Fr-Sa-Su schedule
x6 ∈ Z≥0: number of nurses on Sa-Su-Mo schedule
x7 ∈ Z≥0: number of nurses on Su-Mo-Tu schedule

Here, x ∈ Z≥0 means that x ∈ Z and x ≥ 0. On Monday, there are x1 + x6 + x7 nurses
working, so by requirement we should have

x1 + x6 + x7 ≥ 16.

Similarly, for the other days of the week, we have constraints

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 7.

Clearly any of these constraints imply that ∑7
i=1 xi ≥ 1. Thus the requirement that half of the

day-shift nurses have weekends off can be expressed as

x1 + x2 + x3

∑7
i=1 xi

≥ 1
2

.

As done in Example 4, we can multiply both sides by 2 ∑7
i=1 xi, and rewrite this constraint as

a linear one
x1 + x2 + x3 − x4 − x5 − x6 − x7 ≥ 0.

11

Operations Research 1 (ISEN 320-501) Fall 2023

The objective is to minimize the total number of nurses ∑7
i=1 xi, so the model can be written as

min
7

∑
i=1

xi

s. t. x1 + x6 + x7 ≥ 16,

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 7,
3

∑
i=1

xi −
7

∑
i=4

xi ≥ 0,

xi ∈ Z≥0, i = 1, . . . , 7.

relax−−−−−−→

min
7

∑
i=1

xi

s. t. x1 + x6 + x7 ≥ 16,

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 7,
3

∑
i=1

xi −
7

∑
i=4

xi ≥ 0,

xi ≥ 0, i = 1, . . . , 7.

The original model (on the left) is not a LO model due to the integrality conditions on the
variables. Nevertheless, all of the constraints are affine linear and the objective function is
also linear. We can thus relax the integrality conditions and get a LO model (on the right)
by only imposing xi ≥ 0 for each i = 1, . . . , 7. This relaxed LO model is coded in the script
model_scheduling.py and returns the following result.

The minimum number of nurses is 31.0.

x1 = 11.00

x2 = 0.00

x3 = 10.00

x4 = 3.00

x5 = 2.00

x6 = 4.00

x7 = 1.00

Note that although the integrality conditions were relaxed, the solver actually returns an inte-
gral optimal solution to the LO model, which means that we have found an optimal solution to
the original model.

Example 6. A company plans the monthly trampoline production quantities, where the de-
mand during the next four months is

d1 = 110, d2 = 120, d3 = 130, d4 = 100.

Currently, the company has an inventory of 20 trampolines. During each month, it can manu-
facture up to 100 trampolines with regular-time labor for $120 per unit. With overtime labor,

12

Operations Research 1 (ISEN 320-501) Fall 2023

it can manufacture more trampolines, costing $150 per unit. A per unit inventory cost of $10
is charged at the end of each month. The warehouse can fit up to 25 trampolines. The manage-
ment wants to develop a plan to minimize the total production and inventory costs. To build
the model, we denote the index set for the planning horizon as T := {1, 2, 3, 4}. The decision
variables are

xt ≥ 0: number of units made using regular-time labor during month t ∈ T,
yt ≥ 0: number of units made using overtime labor during month t ∈ T,
lt ≥ 0: inventory level at the end of month t ∈ T.

while these variables should be integers in practice, we temporarily relax the integrality condi-
tions to formulate a LO model. Note that

lt = lt−1 + (xt + yt)− dt, t ∈ T,

where l0 = 20. Here, the inventory variables can be eliminated, but they often help understand
and interpret the model. The total cost consists of three parts:

• regular-time production cost: 120 ∑4
t=1 xt,

• overtime production cost: 150 ∑4
t=1 yt,

• inventory cost: 10 ∑4
t=1 lt.

Thus the model can be written as (with the parameter l0 = 20)

min 120
4

∑
t=1

xt + 150
4

∑
t=1

yt + 10
4

∑
t=1

lt

s. t. xt ≤ 100, t ∈ T,

lt = lt−1 + xt + yt − dt, t ∈ T,

lt ≤ 25, t ∈ T,

xt, yt, lt ≥ 0, t ∈ T.

We code the LO model in the script model_inventory.py and the output is displayed below.

The minimum cost is $54100.00.

The regular-time, overtime labor, and inventory level in

each period are shown below.

Period 1:

regular-time labor is 100.00

overtime labor is 0.00

inventory level is 10.00

Period 2:

regular-time labor is 100.00

overtime labor is 10.00

inventory level is 0.00

13

Operations Research 1 (ISEN 320-501) Fall 2023

Period 3:

regular-time labor is 100.00

overtime labor is 30.00

inventory level is 0.00

Period 4:

regular-time labor is 100.00

overtime labor is -0.00

inventory level is 0.00

The obtained solution is indeed integer-valued so the solution is feasible and optimal even
when we enforce the integrality conditions on the number of trampolines.

Example 7. A wholesale company specializing in one product has m = 3 warehouses Wi,
i = 1, . . . , m serving n = 4 retail locations Rj, j = 1, . . . , n. Transporting one unit of the
product from Wi to Rj costs cij dollars, i = 1, . . . , m, and j = 1, . . . , n. The company has si

units of product available to ship from Wi, i = 1, . . . , m. To satisfy the demand, at least dj

units of the product must be delivered to Rj. The values of si, dj, and cij for i = 1, . . . , m and
j = 1, . . . , n are given by

s1

s2

s3

 =

40
50
60

 ,


d1

d2

d3

d4

 =


17
33
23
47

 ,

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

 =

3 2 1 1
2 3 5 4
3 5 7 8

 .

The goal is to find out how many units of the product should be shipped from each warehouse
to each retail location so that the company’s overall transportation costs are minimized. The
decision variables are

xij ≥ 0: the product quantitiy shipped from Wi to Rj, i = 1, . . . , m, j = 1, . . . , n.

We need to make sure that the number of units shipped out of Wi does not exceed si

n

∑
j=1

xij ≤ si, i = 1, . . . , m.

To satisfy the demand at Rj, we must have

m

∑
i=1

xij ≥ dj, j = 1, . . . , n.

14

Operations Research 1 (ISEN 320-501) Fall 2023

The objective is to minimize the total cost of transportation, so the LO model can be written as

min
m

∑
i=1

n

∑
j=1

cijxij

s. t.
n

∑
j=1

xij ≤ si, i = 1, . . . , m,

m

∑
i=1

xij ≥ dj, j = 1, . . . , n,

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

We code this LO model in the script model_transportation.py and the output is displayed
below.

The minimum shipment cost is 336.00.

The shipment plan is displayed below.

location\warehouse 1 2 3

1 0.00 0.00 17.00

2 0.00 20.00 13.00

3 23.00 0.00 0.00

4 17.00 30.00 0.00

15

	Linear Optimization Formulations
	Computer Modeling Tools and Solvers
	More Examples and Models

